

Group Topic

Betley Group's Work

Reporter: Dong-Song Zheng

Date: 2025.10.17

作者简介

Mössbauer Spectroscopy (穆斯堡尔谱)

单核金属络合物 (Fe, Co, Cu, Ni)

多核金属络合物

Proposal

Theodore A. Betley

Professional experience

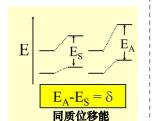
2008 - present Professor, Harvard University;

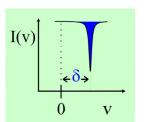
2007 - 2008 Postdoctoral Fellow, Massachusetts Institute of Technology (MIT); Advisor:

Prof. Daniel G. Nocera. (solar energy conversion and storage; PCET)

2002 - 2007 Ph.D., California Institute of Technology; Advisor: Prof. Jonas C. Peters.

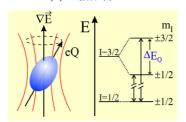
((bio)inorganic, organometallic, electrocatalysis, photocatalysis (PCET)).

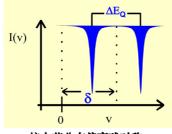

1998 - 2002 B.S., University of Michigan; Major: Chemical Engineering.


Research

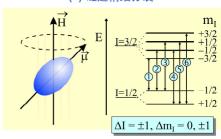
- (1) Synthetic inorganic chemistry.
- (2) First-row transition elements
- (3) Organometallic catalysis and small molecule activation
- (4) C-H bond functionalization.

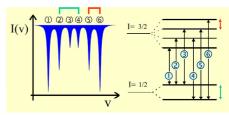
Mössbauer Spectroscopy (穆斯堡尔谱)


(1) 同质异能位移



核电荷分布程球对称


(2) 四极分裂



核电荷分布偏离球对称

(2) 磁超精细分裂

原子核处于磁场

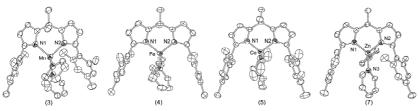
氧化态	自旋态	同质异能位移 (δ, mm/s)
Fe(I)	低自旋 (S=2)	0.5 – 0.8
Fe(II)	高自旋 (S=2)	0.7 - 1.3
Fe(II)	低自旋 (S=0)	0.3 - 0.5
Fe(III)	高自旋 (S=5/2)	0.2 - 0.5
Fe(III)	低自旋 (S=1/2)	0.0 - 0.3
Fe(IV)	高自旋 (S=2)	0.2 - 0.4
Fe(II)	低自旋 (S=1)	-0.1 - 0.1
Fe(V)	低自旋 (S=1/2)	-0.50.2
Fe(VI)	低自旋 (S=0)	-0.80.9

5

配体轨道能级高于金属d轨道

Published on Web 09/15/2009

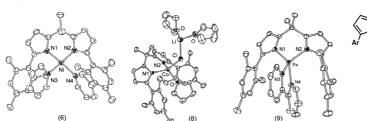
Unusual Electronic Structure of First Row Transition Metal Complexes Featuring Redox-Active Dipyrromethane Ligands


Evan R. King and Theodore A. Betley*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, 306E Mallinckrodt, Cambridge, Massachusetts 02138

Received May 16, 2009; E-mail: betley@chemistry.harvard.edu

Abstract: Transition metal complexes (Mn — Zn) of the dipyrromethane ligand, 1,9-dimesityl-5,5-dimethyldipyrromethane (dpm), have been prepared. Arylation of the dpm ligand α to the pyrrolic nitrogen donors limits the accessibility of the pyrrole π -electrons for transition metal coordination, instead forcing η^1, η^1 coordination to the divalent metal series as revealed by X-ray diffraction studies. Structural and magnetic characterization (SQUID, EPR) of the bis-pyridine adducts of (dpm)Mn^{II}(py)₂, (dpm)Fe^{II}(py)₂, and (dpm)-Co^{II}(py)₂ reveal each divalent ion to be high-spin and pseudotetrahedral in the solid state, whereas the (dpm)Ni^{II}(py)₂ is low-spin and adopts a square-planar geometry. Differential pulse voltammetry on the


J. Am. Chem. Soc. 2009, 131, 14374.

Mn (3), Fe (4) Co (5), Ni (6) Zn (7)

 $[(dpm)CoCl(THF)][Li(THF)_2]$ (8) (dpm)Fe^{II}(bpy) (9)

Figure 1. Solid-state molecular structures for complexes 3, 4, 5, and 7 with the thermal ellipsoids set at the 50% probability level (hydrogen atoms and minor structural disorder in 3 and 4 are omitted for clarity).

- 2 LiCl (2)

1. 配体电子还原金属

MCl₂(py)₂ thf, py

- 2. 自旋态互变异构
- 3. 无分子内氧化还原 (金属

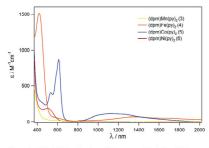

保持二价,配体完全还原)

Figure 2. Solid-state molecular structures for complexes 6, 8, and 9 with the thermal ellipsoids set at the 50% probability level (hydrogen atoms, one solvent molecule for 6, and two solvent molecules for 9 are omitted for clarity). The Li⁺ in 8 is coordinated to an adjacent molecule's pyrrole ring.

Table 1. Magnetic and Spectral Properties of Complexes 3, 4, 5, and 9

complex	S	$\mu_{ ext{eff}}$ (BM)	λ /nm (ε /M $^{-1}\cdot$ cm $^{-1}$)	δ (mm/s)	$\Delta E_{\rm q}$ (mm/s)
$(dpm)Mn(py)_2(3)$	5/2	$5.97,^a 6.1(1)^b$	_	y -	_
$(dpm)Fe(py)_2$ (4)	2	$5.00,^a 5.2(1)^b$	420 (1500), 1359 (70), 1675 (50) (sh)	$0.80\ 0.86$	3.46 2.63
(dpm)Fe(bpy) (9)	2	$5.1(1)^b$	535 (410), 585 (620), 613 (870), 1125 (110), 1260 (105) (sh)	0.72	3.00
$(dpm)Co(py)_2$ (5)	3/2	$4.20^a, 4.5(1)^b$	395 (1100)	1-	_
$(dpm)Ni(py)_2$ (6)	0	_	503 (190)	_	_

^a Average moment over T range of 200-300 K from SQUID. ^b Room temperature (295 K) moment in solution by Evans's method.

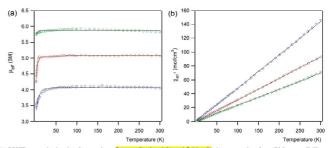


Figure 3. UV/vis/NIR molar absorptivity spectra of 3, 4, 5, and 6. Spectra Figure 4. (a) SQUID magnetization data for complexes 3 (green O), 4 (red O), and 5 (blue O) shown as a plot of μ_{eff} (BM) versus T (K) and (b) as a plot were taken in dichloromethane, molar absorptivities are based on measure—of χ_m⁻¹ (mol/cm³) versus T (K), Dotted lines are the simulations of each data set.¹⁹

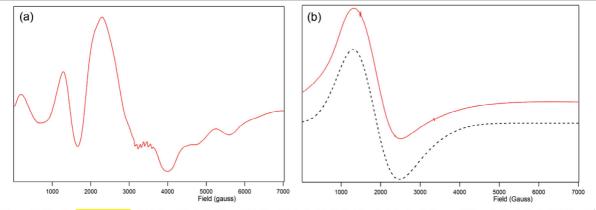


Figure 5. Powder EPR spectrum of (a) $(dpm)Mn(py)_2$ (3) and (b) $(dpm)Co(py)_2$ (5) $(dotted line is data simulation: <math>g_{\perp} 2.02, g_{||} 2.31; A_{\perp} 0, A_{||} 0.0112 \text{ cm}^{-1}; D 7.855 \text{ cm}^{-1}, E/D 0)$ (77 K, X-band, 9.397 GHz).

1.855 cm ', E/D	0) (// K, A-ba	na, 9.397 GHZ).			
	配合物	EPR观测结果	支持的结论	排除的竞争场景	
	(dpm)Mn(py) ₂ (3)	复杂的多线谱	1. 确认高自旋Mn(II)中心。 2. 自旋密度定域在Mn上。	Scenario 1: 排除了配体被氧化形成有机自由基的可能性。	
	(dpm)Co(py)₂ (5)	1. g≈3.48的信号。 2. 信号持续到室温。	1. 确认高自旋Co(II)中心。 2. 表明存在单一、稳定的高自旋基态。	Scenario 2: 排除了自旋态互变异构,因为信号在宽温区内稳定存 在。	

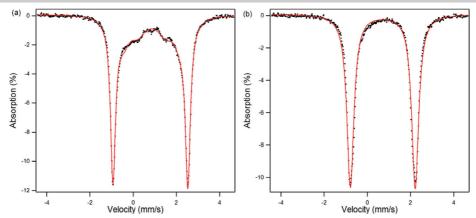


Figure 6. Zero-field Mössbauer spectrum of (a) (dpm)Fe(py)₂ (4) and (b) (dpm)Fe(bpy) (9) at 4.2 K.

Fe (II) 低s电子	~密度
导致跃迁能增	大,在
穆斯堡尔谱上	表现为
更大的异构位	移δ值。

	12/4 / / / / / / / / / / / / / / / / / /		
氧化态与自旋态	典型异构位移范围 (δ, mm/s)	文章中的数值	结论
高自旋 Fe(III)	0.2 - 0.5	0.72 - 0.86	完全不符
高自旋 Fe(II)	0.7 - 1.3	0.72 - 0.86	完美吻合

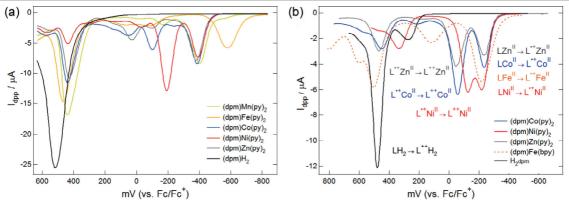


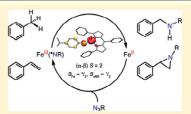
Figure 7. Differential pulse voltammograms of (a) solutions in THF of 10^{-4} M (dpm)M, where $M = Mn(py)_2$ (3), $Fe(py)_2$ (4), $Co(py)_2$ (5), $Ni(py)_2$ (6), $Zn(py)_2$ (7), H_2 (1); Bu_4NPF_6 (0.3 M); scan rate 20 mV/s on glassy C electrode), and (b) solutions in acetonitrile of 10^{-4} M (dpm)M, where $M = Co(py)_2$ (5), $Ni(py)_2$ (6), $Zn(py)_2$ (7), $Fe(py)_2$ (7), $Fe(py)_2$ (9), $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (2), $Fe(py)_2$ (3), $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (2), $Fe(py)_2$ (3), $Fe(py)_2$ (3), $Fe(py)_2$ (4), $Fe(py)_2$ (5), $Fe(py)_2$ (6), $Fe(py)_2$ (6), $Fe(py)_2$ (7), $Fe(py)_2$ (9), $Fe(py)_2$ (1); $Fe(py)_2$ (2); $Fe(py)_2$ (1); $Fe(py)_2$ (2); $Fe(py)_2$ (2); $Fe(py)_2$ (2); $Fe(py)_2$ (2); $Fe(py)_2$ (2); $Fe(py)_2$ (3); $Fe(py)_2$ (3); $Fe(py)_2$ (4); $Fe(py)_2$ (5); $Fe(py)_2$ (6); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (1); $Fe(py)_2$ (2); $Fe(py)_2$ (

差分脉冲伏安法 (DPV): (1) 氧化电位与金属种类无关,说明氧化过程是配体中心的,而非金属中心。 (2) 自由配体 dpmH₂ 的氧化电位比金属配合物高约 700 mV,说明金属配位显著降低了配体的氧化势。

核心突破点是首次分离出高自旋Fe(III)-亚胺自由基物种,这颠覆了传统Fe(IV)=NR的认知。

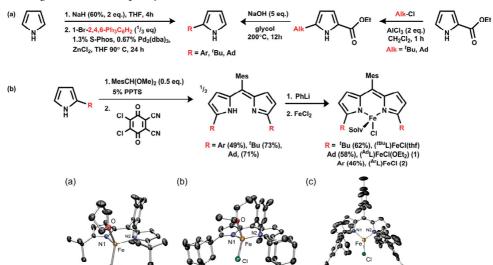
ARTICLE

pubs.acs.org/JACS


Catalytic C—H Bond Amination from High-Spin Iron Imido Complexes

Evan R. King, Elisabeth T. Hennessy, and Theodore A. Betley*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States



ABSTRACT: Dipyrromethene ligand scaffolds were synthesized bearing large aryl (2,4,6-Ph₃C₆H₂, abbreviated Ar) or alkyl (1 Bu, adamantyl) flanking groups to afford three new disubstituted ligands (8 L, 1,9-R₂-5-mesityldipyrromethene, R = aryl, alkyl). While high-spin (S = 2), four-coordinate iron complexes of the type (8 L)FeCl(solv) were obtained with the alkyl-substituted ligand varieties (for R = 6 Bu, Ad and solv = THF, OEt₂), use of the sterically encumbered aryl-substituted ligand precluded binding of solvent and cleanly afforded a high-spin (S = 2), three-coordinate complex of the type (6 L)FeCl. Reaction of (6 L)FeCl(OEt₂) with alkyl azides resulted in the catalytic amination of C — H bonds or olefin aziridination at room temperature. Using a 5% catalyst loading, 12 turnovers were

(#8uL)FeCl(thf)

Scheme 1. Ligand and Metal Complex Syntheses

(AdL)FeCl(Et₂O) (1)

(ArL)FeCI (2)

13

Scheme 3. Synthesis of the Bimolecularly Coupled Fe^{III} Imido Precursor 3 and the Terminal Imido Complex 4 with a Delocalized Imido-Based Radical, Fe^{III} (*NAr), and Their Subsequent Reactivity with C—H Bonds

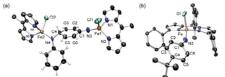


Figure 2. Solid-state core molecular structures for [a] 3 and [b] 4. Ligand anyl substituents, hydrogen atoms, and solvent molecules are omitted for clarity Rond lengths (A) area scfollows: For 3 Fe1 – N3, 1 81(2); Fe1 – C11, 202(1); F1 – N3, 1 7276(3); C1 – C2, 1 462(4); C2 – C3, 1 333(3); C3 – C4, 1,490(4); C4 – C3, 1,489(4); C3 – C6, 1,331(3); C6 – C1, 1,402(4); N4 – C4, 1,484(3); F2 – C12, 2,226(1); F2 – N4, 1,886(2); F0 r4; F2 – C1, 2,226(1); F2 – N4, 1,486(2); F3 – C3, 1,414(3); C3 – C4, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C1, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C1, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C6, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C6, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C6, 1,414(3); C4 – C5, 1,405(3); C5 – C6, 1,378(3); C6 – C6, 1,405(3); C7 – C6, 1,405(3)

络合物4:超长的Fe-N 亚胺键 (1.768 Å),比已 知Fe(IV)=NR键长约0.1 Å。亚胺芳环的键长显示出自由基离域的特征。 (fbuL)FeCl(thf)

complex

单核金属络合物 (Fe)

Table 1. Spectral and Magnetic Properties of Complexes 1–4 $\epsilon > 20,000 \text{ M}^{-1} \text{ cm}^{-1}$

 $\mu_{\rm eff} (\mu_B)$

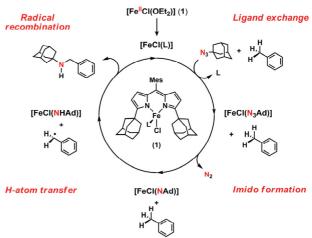
5.2(2)

$(^{Ad}L)FeCl(OEt_2)$ (1)	5.1(1)	2	$494 (59 000)^a$	0.98	3.70
(ArL)FeCl (2)	5.1(2)	2	554 (26 000)	0.68	0.68
$[(^{Ar}L)FeCl]_2(\mu - N(Ph)(C_6H_5)N)$ (3)	7.8(2)	5/2, 5/2	551 (27 000)	0.33	2.15
(^{Ar}L) FeCl $(NC_6H_4-p^{-t}Bu)$ (4)	5.3(1)	2	553 (26 000)	0.29	2.29
a UV/vis reported for pyridine adduct. b	Recorded at 105 l	ζ.			
(a) 0 2 (b) Londonest V 4 - 4 - 5 (c) 4 - 6 (c) S = 2 ('NAn' S = '/	Mes R Solv C R R = 'Su (52%), (**Su_),FeC!(thf) Ad (58%), (**L),FeC!(OEt ₂) (1) Ar (46%), (**L),FeC!(2)	fles NoFe H	CI N Mes

 $\lambda/\text{nm} \left(\varepsilon/\text{M}^{-1} \text{cm}^{-1}\right)$

 $497 (40 000)^a$

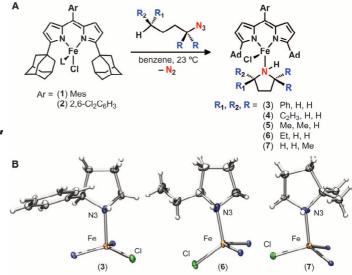
 $\delta \, (\text{mm/s})^b$


 $|\Delta E_{\rm Q}| ({\rm mm/s})^b$

S

Figure 3. Terminal imido radical complex 4 exhibiting Mössbauer metrical parameters nearly identical with those of the bimolecularly coupled differric 3, illustrated in (a) by the zero-field $100 \text{ K}^{-7}\text{Pe}$ Mossbauer spectral data, presented as black dots with spectral fits as solid lines $(\partial_1 \Delta E_0 | \text{cm}))$; $\text{Ire}^{1/2}$ (cod) 0.68, 0.68; $\text{[Fe^{11}]}_3$ 3 (green) 0.33, 2.15; $\text{[Fe^{11}]}_3$ (year) $\text{[Fe^{11}]}_3$ 3 (green) 0.33, 2.15; $\text{[Fe^{11}]}_3$ (Year) $\text{[Fe^{11}]}_3$ 3 (green) 0.37, 2.15; $\text{[Fe^{11}]}_3$ (which is the terminal imido radical in 4, illustrated in (b) by the calculated spin density population $(\alpha - \beta)$ for 4 (S=2) bPT (B3LPP/TZVP, SV(P); ORCA 2.7°9).

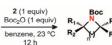
42% yield H H $(\alpha - \beta) S = 2$ $S_{p_a} = \frac{1}{2}$ $S_{p_a} = \frac{1}{2}$ 76% yield


Scheme 2. Proposed Catalytic Cycle for the Amination of C—H Bonds by Reaction of 1 with Organic Azides

Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C–H Bond Amination

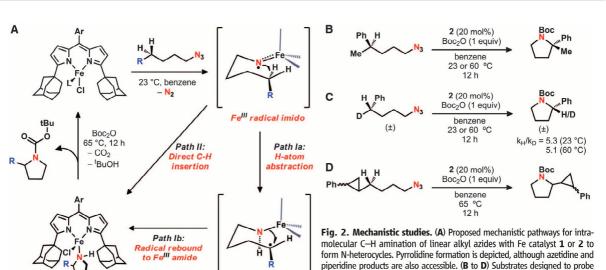
Elisabeth T. Hennessy and Theodore A. Betley*

Science 2013, 340, 591.


第三部分

单核金属络合物 (Fe)

R ₁ R ₂ R ₄	N ₃ Boc ₂ O ben	mol%), (1 equiv) zene, C, 12 h	R ₁ Boc R ₂ R ₃ R ₄
Pyrrolidine	Yield (%)*	Entry	Azide


Entry	Azide	Pyrrolidine	Yield (%)*	Entry	Azide	Pyrrolidine	Yield (%)*
1	Ph N ₃	Ph PG	98 ^{1§} (PG = Fmoc) 93 ^{1§} 57 ^{1§} (PG = Boc)	10	N ₃	Boc	66 1:5:1.0 dr
2	N ₃	Boc	72 ^{‡§}	11	Me Ph	Me Boc Ph	70
3	Me Me N ₃	Me Boc	60 ⁹ 49 ^{‡§}	12	Me No Ph	Me Boc	98
4	Et N3	Et N	19 ^{‡§}	13	Ph N ₃	Me Boc	75 [‡] 93% ee
5	H H Me Me	Boc Me Me	17 ^{‡§}	14	Me No	Boc Me	84 1.1:1.0 dr
6	$X \underbrace{\begin{array}{c} Me \\ N_3 \\ H \end{array}}_{H} \underbrace{\begin{array}{c} Me \\ (X = CO_2Et) \end{array}}_{N_3}$	X Ne Me	11	15	H N ₃	Boc Me	67
7	Ph O N ₃	Ph Boc	47	16	H H Me N ₃	Boc Me	73 2.1:1.0 dr
8	H H OTMS	OTMS	68‡	17	Me Et Me N ₃	Me Ne Me	58 5.5:1.5: 1.0:0.08 dr
9	Ph N ₃	Boc Ph	60 3.9:1.0 dr	18	Me Me Me Me	Me PG Mo	14 (PG = Boc) 78 [†] (PG = Fmoc)

Entry	Azide	Product(s)	Conv. (%)*
1 🔌	>// _N	Boc N	45
2 /	~~~	N ₃	82
3 Ph		FII N Pn	52 (1.0:0.9
4 /	N ₃	Boc /Pr	30c 47 (1.0:1.5
5	$\sqrt{\lambda_{N_3}}$	Boc 'Bu	30c 47 (1.0:1.5

^{*} Yields determined by ¹H NMR using ferrocene or trimethoxybenzene as internal standards. [†] Ratios determined by integration of GC/MS peaks.

the mechanism of C-H functionalization and distinguish between paths I and II.

Article

pubs.acs.org/JACS

Characterization of Iron-Imido Species Relevant for *N*-Group Transfer Chemistry

Diana A. Iovan and Theodore A. Betley*

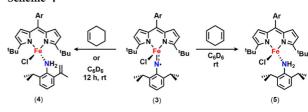
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States

Supporting Information

ABSTRACT: A sterically accessible tert-butyl-substituted dipyrrinato di-iron(II) complex [(80 L)FeCI]₂ possessing two bridging chloride atoms was synthesized from the previously reported solvento adduct. Upon treatment with aryl azides, the formation of high-spin Fe^{III} species was confirmed by 57 Fe Mössbauer spectroscopy. Crystallographic characterization revealed two possible oxidation products: (1) a terminal iron iminyl from aryl azides bearing ortho isopropyl substituents, (16 L)FeCl(57 Cr₆R-2-2,6 57 Fr₇); or (2) a bridging di-iron imido arising from reaction with 3,5-bis(trifluoromethyl)aryl azide, [(16 L)FeCl(57 Cr₆R-3,5-(CF₃)₂). Similar to the previously reported (58 L)FeCl(57 Cr₆R-4-4'Bu), the monomeric iron imido is best described as a high spin Fe^{III} antiferromagneti

J. Am. Chem. Soc. 2016, 138, 1983

Scheme 1


$$\begin{array}{c} \text{CI} \\ \text{CI} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{I}_{\text{Bu}} \end{array} \begin{array}{c} \text{1. 1.2 eq } \underset{\text{Et}_2\text{O}}{\text{FeCl}_2} \\ \text{Et}_2\text{O} \\ \text{2. reflux toluene} \\ \text{vacuum} \end{array} \\ \text{Ar} \\ \text{Ar} \\ \text{Ru} \\ \text{N} \\ \text{Fe} \\ \text{CI} \\ \text{Bu} \\ \text{N} \\ \text{Ar} \\ \text{Ar} \end{array}$$

Scheme 3

$$Ar \longrightarrow N \\ Fe \longrightarrow CI \\ Fe \longrightarrow Fe \\ IBu \\$$

 $\delta = 0.37 \text{ mm/s}$ Fe-N键较长 (1.768 Å)

Scheme 4

Scheme 5

$$Ar \xrightarrow{V} \begin{array}{c} ^{t}Bu \\ N \xrightarrow{F_{1}C} \\ N \xrightarrow{F_{2}C} \\ N \xrightarrow{H_{2}} \\ N \xrightarrow{H_{2}} \\ (2) \end{array} Ar \xrightarrow{F_{3}C} \begin{array}{c} F_{3}C \\ N \xrightarrow{F_{3}C} \\ N \xrightarrow$$

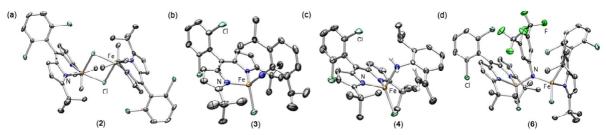


Figure 2. Solid-state molecular structures for (a) $[(^{fBu}L)FeCl]_2$ (2), (b) $(^{fBu}L)FeCl(^{\bullet}NC_6H_3-2,6-^{i}Pr_2)$ (3), (c) $(^{iBu}L)FeCl(H_2NC_6H_3-2,e^{i}Pr_2-6-C(CH_2)$ (CH_3)) (4), and (d) $[(^{iBu}L)FeCl]_2(\mu-NC_6H_3-3,5-(CF_3)_2)$ (6) with thermal ellipsoids at 50% probability level. Color scheme: Fe, orange; N, blue; Cl, aquamarine; F, green. Hydrogens, solvent molecules, and disordered isopropyl group in 3 are omitted for clarity.

Scheme 6

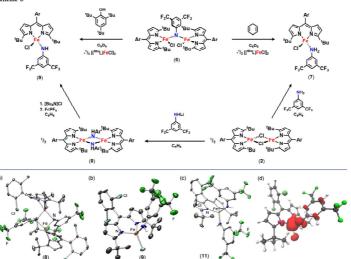
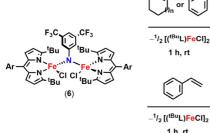



Figure 5. Solid-state molecular structures for (a) [(**L)Fe(NHAr*)], (8), (b) (***L)Fe(L(NHAr*) (9), and (c) (***L)Fe(NHAr*), (11) with thermal ellipsoids at 50% probability level. Color scheme: Fe, orange; N, blue; Cl, aquamarine; F, green. Hydrogens, solvent molecules, and disordered trifluoromethyl groups in 11 are omitted for clarity; Ar* = 3,5-bis(trifluoromethyl)phenyl. (d) Mulliken spin density plot calculated* for 0. **Llustanting 2.7*20% grind dambing on the astronomethyl)phenyl. (d) Mulliken spin density plot calculated* for 0. **Llustanting 2.7*20% grind dambing on the astronomethyl)phenyl. (d) Mulliken spin density plot calculated* for 0. **Llustanting 2.7*20% grind dambing on the astronomethyl)phenyl. (d) Mulliken spin density plot calculated* for 0. **Llustanting 2.7*20% grind dambing on the astronomethyl)phenyl.

Scheme 8

1 h, rt

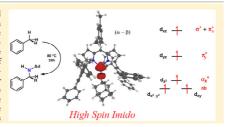
Scheme 9

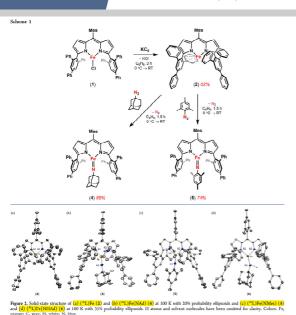
Scheme 10

[(tBuL)FeCl]₂ (10 mol%) 12 h, rt

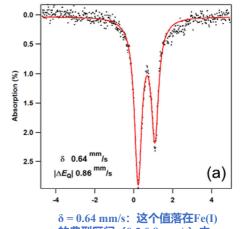
Substrate	Product	Yield (%
\bigcirc	NHAr	76ª
	ArHN	35 ^a
	ArHN ArHN	

pubs.acs.org/JACS

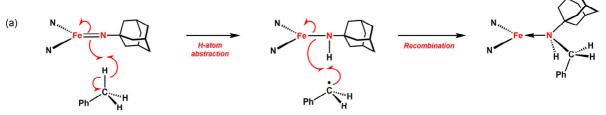

High-Spin Iron Imido Complexes Competent for C-H Bond Amination


Matthew J. T. Wilding, Diana A. Iovan, and Theodore A. Betley*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States


Supporting Information

ABSTRACT: Reduction of previously reported ($^{\Lambda}$ L)FeCl with potassium graphite furnished a low-spin (S=1/2) iron complex ($^{\Lambda}$ L)Fe which features an intramolecular η^6 -arene interaction and can be utilized as an Fe¹ synthon ($^{\Lambda}$ L) = 5- mesityl-1,9-(2,4,6-Ph₃C₆H₂)dipyrrin). Treatment of ($^{\Lambda}$ L)Fe with adamantyl azide or mesityl azide led to the formation of the high-spin (S=5/2), three-coordinate imidos ($^{\Lambda}$ L)Fe(NAd) and ($^{\Lambda}$ L)Fe(NMes), respectively, as determined by EPR, zero field 57 Fe Mössbauer, magnetometry, and single crystal X-ray diffraction. The high-spin iron imidos are reactive with a variety of substrates: ($^{\Lambda}$ L)Fe($^{\Lambda}$ -NAd), undergoes



络合物4: Fe-N键长 1.674 Å, 显示典型的双键特征; 络合物5: Fe-N键长 1.708 Å, 显示典型的双键特征。

的典型区间 (0.5-0.8 mm/s) 内。

> 动力学同位素效应:

分子间: $k_H/k_D = 15.5(3)$

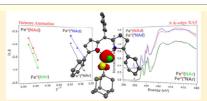
分子内: $k_H/k_D = 11(1)$

表明C-H键断裂是决速步,支持分步的HAA/自由基重组机制。

协同机理: KIE值小至中等 (通常 2-3)

分步机理: KIE值大(通常 >7)

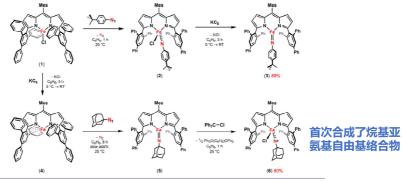
Article


pubs.acs.org/JACS

Direct Comparison of C—H Bond Amination Efficacy through Manipulation of Nitrogen-Valence Centered Redox: Imido versus Iminyl

Matthew J. T. Wilding, Diana Λ. Iovan, Alexandra T. Wrobel, James T. Lukens, Samantha N. MacMillan, Kyle M. Lancaster, Samantha N. Betlev

Supporting Information


ABSTRACT: Reduction of previously reported iminyl radical ($^{\Lambda}$ L)FeCl($^{\Lambda}$ N($_{C_0}$ H₁-p- 1 Bu)) (2) with potassium graphite furnished the corresponding high-spin ($S = ^{5}/_{2}$) imido ($^{\Lambda}$ L)Fe(N(C_0 H₄-p- 1 Bu)) (3) ($^{\Lambda}$ L = S-mesityl-1,9-(2,4,6-Ph₂C,H₂)dipyrrin). Oxidation of the three-coordinate imido ($^{\Lambda}$ L)Fe(NAd) (5) with chlorotriphenylmethane afforded ($^{\Lambda}$ L)FeCl($^{\Lambda}$ NAd) (6) with concomitant expulsion of Ph₃C-(L C+ L C+ L CPh₂CPh₂. The respective aryl/alkyl imido/iminyl pairs (3, 2; 5, 6) have been characterized by EPR, zero-field 57 Fe Mössbauer, magnetometry, single crystal X-ray diffraction,

[†]Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States

²Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States

Scheme 1. Synthesis of Imido (3, 5) and Iminyl (2, 6) Species

Scheme 2. Inter- and Intramolecular Amination Reactions

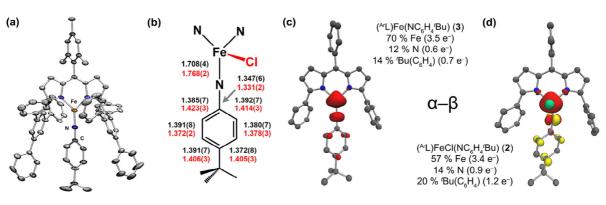


Figure 2. (a) Solid state molecular structure of 3 with thermal ellipsoids at the 35% probability level. Positional disorder, solvent molecules, and H atoms are removed for clarity. Color scheme: Fe, orange; N, blue; C, gray. (b) Selected bond metrics (Å) for iminyl 2 in red and imido 3 in black. Mulliken spin density plots $(\alpha - \beta)$ and values calculated for 3 (c) and 2 (d).

Table 3. Rate Constants, Half-Lives, and Activation Energies for Reaction of Iron Complexes with Toluene^a

complex	T (°C)	$k (s^{-1})$	$t_{1/2}$ (min)	$E_{\rm a}$ (kcal/mol)
<u>5</u>	<mark>80</mark>	0.0264	<mark>26</mark>	11.5
	90	0.0427	16	
	100	0.0633	11	
3	80	0.0195	36	12.1
	90	0.0343	20	
	100	0.0745	9	
<mark>6</mark>	<mark>22</mark>	0.0299	23	<mark>7.1</mark>
	32	0.0433	16	
	42	0.0722	10	
2	22	0.0166	42	9.2
	32	0.0256	27	
	42	0.0528	13	

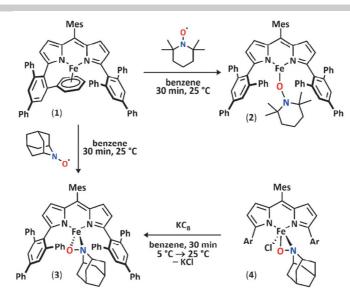
[&]quot;Exponential decay of $\Delta(\lambda_{\rm max})$ versus time was fit independently at each temperature.

Communications

Radical Reactions

International Edition: DOI: 10.1002/anie.201706594 German Edition: DOI: 10.1002/ange.201706594

C-H Activation from Iron(II)-Nitroxido Complexes


Claudia Kleinlein, Andrew J. Bendelsmith, Shao-Liang Zheng, and Theodore A. Betley*

Abstract: The reaction of nitroxyl radicals TEMPO (2,2',6,6'-tetramethylpiperidinyloxyl) and AZADO (2-azaadamantane-N-oxyl) with an iron(I) synthon affords iron(II)-nitroxido complexes (*^L)Fe(k'-TEMPO) and (*^L)Fe(k'-N,O-AZADO) (*^L = 1,9-(2,4,6-Ph,C_0H_2)_2-5-mesityldipyrrome-thene). Both high-spin iron(II)-nitroxido species are stable in the absence of weak C-H bonds, but decay via N-O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4-cyclohexadiene. Whereas (*^L)Fe(k'-TEMPO) reacts to give a diferrous hydroxide [(*^L)Fe(z'-N,O-AZADO) with hydrogen atom donors yields ferric hydroxide (*^L)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C-H substrate and are consistent with rate-determining hydrogen atom transfer.

iron(II)-hydroperoxo and -alkylperoxo model complexes remain elusive to date, due to facile oxidation of the iron(II) site through O–O bond cleavage. $^{[2c,0]}$ Iron(II)-nitroxido complexes can be regarded as isoelectronic, but more stable analogues of peroxo species. We therefore propose that the study of pathways available for N–O bond cleavage in iron(II)-nitroxido complexes can complement the current mechanistic understanding for enzymatic oxidation reactions involving iron(II)-alkylperoxo species (Figure 1b). In 2012, Smith et al. reported an iron(II)-nitroxido species PhB-(Meslm)₃Fe(κ^{L} -TEMPO) featuring a tris(carbene)borate ligand (PhB(MesIm)₃= phenyltris(1-mesitylimidazol-2-ylidene)borate). $^{[7]}$ Upon heating, N–O bond homolysis occurred and formation of an iron(III)-oxo complex was proposed.

Herein, we report the synthesis and characterization of

在众多血红素和非血 红素酶中,铁(II)-过 氧/烷基过氧物种是关 键的氧化反应中间体。

Scheme 1. Synthesis of iron nitroxides.

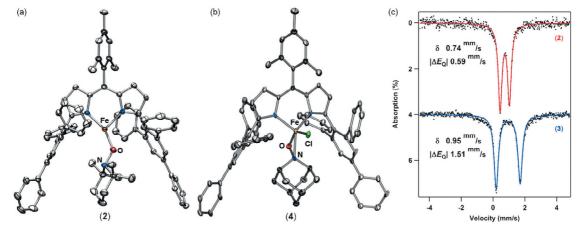
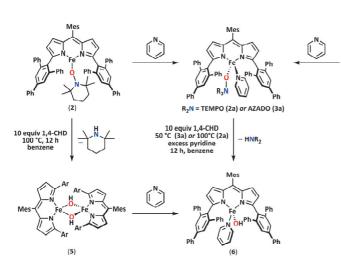
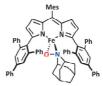




Figure 2. Solid-state structures of a) $\binom{A'}{L}$ Fe(κ¹-TEMPO) (2) and b) $\binom{A'}{L}$ FeCl(κ²-N,O-AZADO) (4) at 100 K with thermal ellipsoids at 50% probability level. Color Scheme: Fe, orange; N, blue; O, red; Cl, green. Hydrogens and solvent molecules are omitted for clarity. c) Zero-field ⁵⁷Fe Mössbauer spectrum of $\binom{A'}{L}$ Fe(κ¹-TEMPO) (2) (red, top) and $\binom{A'}{L}$ Fe(κ²-N,O-AZADO) (3) (blue, bottom) collected at 90 K.

10 equiv R-H

动力学同位素效应 (KIE):

(1) 当xanthene = 5 equiv时, KIE ≈ 6.1, 表明氢原子 转移是决速步。

R-H=

1.4-CHD

(2) 当xanthene = 50 equiv 时, KIE降至2.1, 表明决速 步转变为不涉及C-H键断裂 的步骤。

结论: 更有可能是协同机理。

Scheme 2. Formation of iron hydroxides.

C-H Activation

International Edition: DOI: 10.1002/anie.201708519

German Edition: DOI: 10.1002/ange.201708519

Diastereoselective C-H Bond Amination for Disubstituted Pyrrolidines

Diana A. Iovan, Matthew J. T. Wilding, Yunjung Baek, Elisabeth T. Hennessy, and Theodore A. Betley*

Abstract: We report herein the improved diastereoselective synthesis of 2,5-disubstituted pyrrolidines from aliphatic azides. Experimental and theoretical studies of the C–II amination reaction mediated by the iron dipyrrinato complex (AdL)FeCl(OE12) provided a model for diastereoinduction and allowed for systematic variation of the catalyst to enhance selectivity. Among the iron alkoxide and aryloxide catalysts evaluated, the iron phenoxide complex exhibited superior performance towards the generation of syn 2,5-disubstituted pyrrolidines with high diastereoselectivity.

Scheme 1. Diastereoselective iron-catalyzed cyclization.

单核金属络合物 (Fe)

Table 1: Diastereoselective C-H amination.

(AdL)Fe(X)(solv) (20 mol%)
Boc₂O (1 equiv)

benzene, 60 °C, 12 h

X = Cl. OPh

	2			(±)	3	(±)			
Product	Yield [%] ^[a] d	l.r. ^[b]	Product	Yield [%] ^[a]	d.r. ^[b]		Product	Yield [%] ^[a]	d.r. ^[b]
$R^3 = C_2H_1$ 3a $R^3 = C_2H_1$	(72) ^[c] 77 (72) ^[d]	3.9:1 ^[c] > 20:1 ^[d] 3f	$R^3 = C_2H_3$ Me Boc	36 (36) ^[c] 53 (53) ^[d]	4:1 ^[c] 20:1 ^[d]	3k	13 = C ₂ H ₃ Boc N Br	30 (30) ^[Ce] 52 (45) ^[d]	> 20:1 ^[c] > 20:1 ^[d]
3b CI Boc	(63) ^[c] 75 (67) ^[d] >	3:1 ^[c] > 20:1 ^[d] 3g	Me Boc	(47) ^[c] 55 (49) ^[d]	20.1	31	Boc	37 (36) ^[c] 58 (56) ^[d]	$> 20:1^{[c]}$ $> 20:1^{[d]}$
3c Br Boc	44 (41) ^[c] 67 (68) ^[d] >	4:1 ^[c] > 20:1 ^[d] 3h	Br N	59 (55) ^[c] 79 (72) ^[d]	4:1 ^[c] > 20:1 ^[d]	3m	Boc CF ₃	38 (31) ^[c] 58 (51) ^[d]	> 20:1 ^[c] > 20:1 ^[d]
3d F Boc	(49) ^[c] 67 (66) ^[d]	3:1 ^[c] > 20:1 ^[d] 3i	Boc	64 (48) ^[c] 74 (67) ^[d]	> 20.11	3n	Boc N Me	27 (30) ^[c] 50 (43) ^[d]	4:1 ^[c] 11:1 ^[d]
3e Boc	38 (41) ^[c] 74 (71) ^[d]	3:1 ^[c] >20:1 ^[d] 3j	Boc N	45 (38) ^[c] 69 (64) ^[d]	$> 20:1^{[c]}$ $> 20:1^{[d]}$	30	Boc	22 (16) ^[c] 20 (23) ^[d]	3:1 ^[c] 10:1 ^[d]
$R^1 = Ph, R^3 = Ph$	34 (37) ^[c] Ph 43 (48) ^[d]	5:1 ^[c] 16:1 ^[d]	$R^1 = C_2H_3$, $R^3 = Ph$	NI/A	3.5:1 ^[c] 7:1 ^[d]	R ¹ = H, R ²	$R^3 = C_2H_3$	(66) ^[c] 71 (72) ^[d]	1.5:1 ^[c] 2:1 ^[d]

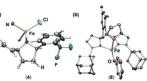
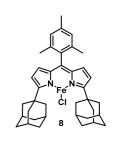



Figure 1. Truncated solid-state structure^[10] of a) (*dL)FeCl [2-(o-(F,C)C,H.)-5-vinylpyrrolldine] (4) and b) (*dL)Fe(OPh) (THF) (8) at 100 K with 50% probability ellipsoids.

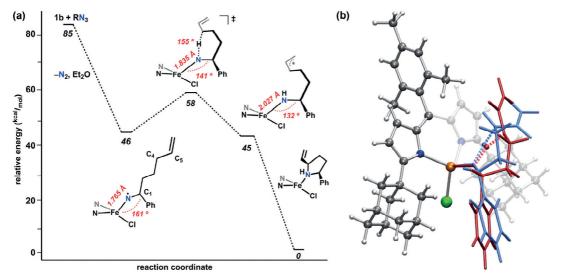
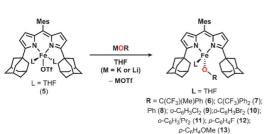
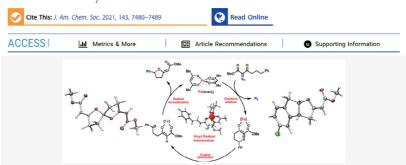



Figure 2. a) Calculated^[12] reaction coordinate for cyclization of 1-azido-1-phenyl-hex-5-ene (2a) mediated by 1b. b) Geometry-optimized TS for the HAA step in the pro-syn (blue) and pro-anti (red) configuration.

Scheme 2. Synthesis of catalyst variants.

Table 2: Catalyst screening as a function of ancillary ligand.

R	Complex	Yield [%]	d.r. ^[c]	
C(CF ₃) (Me) Ph	6	54 ^[a]	13:1	
C(CF ₃)Ph ₂	7	26 ^[a]	6:1	
Ph	8	67 ^[a]	> 20:1	
o-C ₆ H ₃ Cl ₂	9	42 ^[b]	16:1	
o-C ₆ H ₃ Br ₂	10	42 ^[b]	> 20:1	
o-C ₆ H ₃ ⁱ Pr ₂	11	49 ^[b]	> 20:1	
p-C ₆ H ₄ F	12	66 ^[a]	> 20:1	
p-C ₆ H ₄ OMe	13	82 ^[a]	> 20:1	


Catalysts 6–8: reaction with 1-azido-1-(4-chlorophenyl)-hex-5-ene (2b); 9–13: reaction with 1-azido-1-phenyl-hex-5-ene (2a); [a] Isolated yields. [b] ¹H NMR yields. [c] syn:anti.

Article

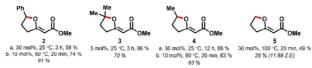
O-Heterocycle Synthesis via Intramolecular C-H Alkoxylation Catalyzed by Iron Acetylacetonate

Yuyang Dong, Alexandra T. Wrobel, Gerard J. Porter, Jessica J. Kim, Jake Z. Essman, Shao-Liang Zheng, and Theodore A. Betley*



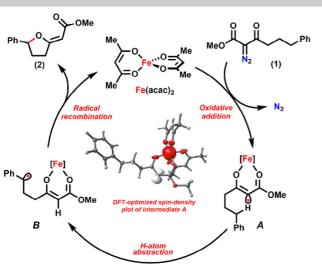
单核金属络合物 (Fe)

(a) Trost, Science, 2018

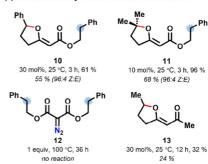

(b) This work

(c) Providing rapid access to polycyclic cores

单核金属络合物 (Fe)


(a) Canvassing substrate C-H bond strength accessibility

(b) Tracking stepwise reaction through isotope labeling


(c) Radical clock ring opening

(d) Shunt reaction with sacrificial H-atom donor

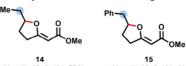


Figure 4. Proposed catalytic mechanism for the synthesis of substituted tetrahydrofurans.

(a) Chemoselectivity of keto- vs. ester-substituent:

(b) Selectivity between 5- vs. 6-membered ring formation:

a. 30 mol%, 25 °C, 12 h, 77 %
b. 10 mol%, 60 °C, 20 min, 94 %
69 % (94:6 Z:E)
a. 30 mol%, 25 °C, 12 h, 63 %
b. 10 mol%, 60 °C, 20 min, 66 %
52 %

单核金属络合物 (Fe)

(a) Preparation of spiro-bi- and tricyclic systems:

1 equiv, 100 °C, 36 h no reaction

10 mol%, 25 °C, 3 h, 66 % 57 % (94:6 Z:E)

10 mol%, 25 °C, 3 h, 83 % 76 % (97:3 Z:E)

10 mol%, 25 °C, 1 h, 74 % 64 % (96:4 Z:E)

10 mol%, 25 °C, 3 h, 71 % 51 %

15 mol%. 25 °C, 3 h, 77 % 72 %

10 mol%, 25 °C, 3 h, 94 % 64 % (98:2 Z:E)

38 20 mol%, 25 °C, 3 h, 58 %

(38)

30 mol%, 60 °C, 40 min, 48 %

Double activation of the methylene group

(b) Regioselective synthesis of fused-bi- and tricyclic motifs (syn:anti > 99:1) :

syn:anti > 99:1 20 mol%, 25 °C, 3 h, > 99 % 78 %

syn:anti > 99:1 15 mol%, 25 °C, 3 h, 81 % 73 %

syn:anti > 99:1 15 mol%, 25 °C, 3 h, 93 %

20 mol%, 25 °C, 3 h, 80 % 68 % (93:7 Z:E)

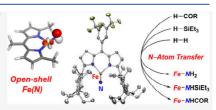
syn:anti > 99:1 20 mol%, 25 °C, 3 h, 48 % 43 %

syn:anti > 99:1 15 mol%, 25 °C, 3 h, 89 % 73 % (85:15 Z:E)

evn:anti > 99:1 a. 10 mol%, 25 °C, 3 h, 73 % b. 10 mol%, 60 °C, 20 min, 75 % 70 %

syn:anti > 99:1 50 mol%, 100 °C, 20 min, 32 % 25 %

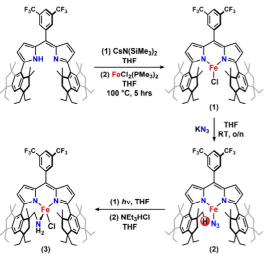
44


pubs.acs.org/JACS Article

An Open-Shell Fe^{IV} Nitrido

Jeewhan Oh, Shao-Liang Zheng, Kurtis M. Carsch, Trevor P. Latendresse, Claire E. Casaday, Brandon M. Campbell, and Theodore A. Betley*

ABSTRACT: We report the photogeneration and characterization of an open-shell, terminal iron nitrido (^{Em}L)Fe(N) using a sterically encumbered dipyrrin ligand environment. The Fe-N distance in the solid-state, zero-field 57 Fe Mössbauer spectrum, and computational analysis are consistent with a triplet electronic ground state of the iron nitrido. Notably, the attenuation of Fe-N multiple bond character through occupying π^{ϕ}_{Fe-N} enables (i) primary $C(sp^3)$ -H amination, (ii) H_2 cleavage, (iii) aromatic C-C cleavage, and (iv) photocatalytic N-atom transfer reactivity. These modes of reactivity have not previously been observed in low-spin Fe(N) analogues.



Supporting Information

第三部分

单核金属络合物 (Fe)

Scheme 1. Metalation of $(^{Em}L)H$ to Synthesize $(^{Em}L)FeCl$ (1), the Preparation of $(^{Em}L)Fe(N_3)$ (2), and the Isolated $C(sp^3)-H$ Amination Product (3) via $(^{Em}L)Fe(N)$ (4)

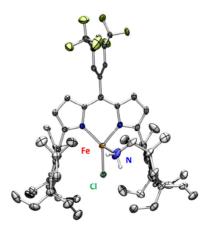
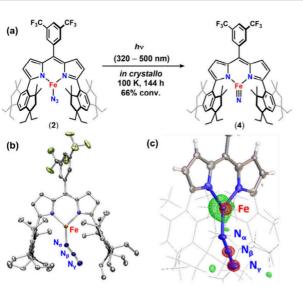



Figure 2. Solid-state structure of (EmL-NH₂)FeCl (3) at 100 K with thermal ellipsoids at the 30% probability level (hydrogen atoms except for those located on the amine fragment and solvent molecules are omitted for clarity; Fe, orange; C, gray; N, blue; F, yellow-green; Cl, green).

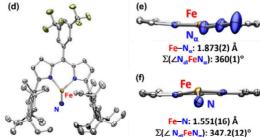


Figure 3. (a) Solid-state conversion of $\frac{2}{(b)}$ to $\frac{4}{(d)}$ in crystalline lattice at 100 K with thermal ellipsoids at the 30% probability level (hydrogen atoms and solvent are omitted for clarity; Fe, orange; C, gray; N, blue; F, yellow-green). (c) Electron density difference map 43 (1.7 e $^{-}/\text{Å}^3$) after the photolysis of 2 for 144 h to generate 4 with rotation of ethyl group from the ligand hydrindacene (green and red colors represent positive and negative electron density, respectively); the core iron environment showing iron pyramidilization prior to photolysis ($\Sigma(\Delta N_{\text{dipyrrin}} \text{FeN}_{\alpha})$: $360(1)^{\circ}$) (e) and following photolysis ($\Sigma(\Delta N_{\text{dipyrrin}} \text{FeN}_{\alpha})$: $347.2(12)^{\circ}$) (f).

Fe-N 键长: 1.551(16) Å, 比已知低自旋 Fe(IV) 氮宾 (1.49-1.53 Å) 略长。

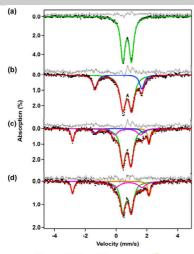
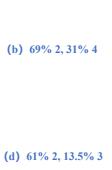
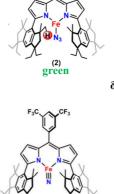
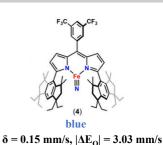
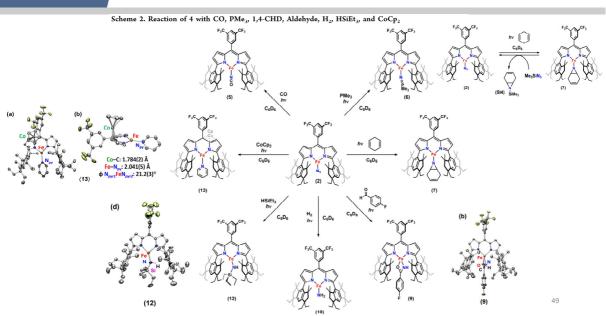





Figure 4. (a) A zero-field ³⁵Fe Mössbauer spectrum of ³² measured at 90 K, (b) 4-³⁵Fe generated by the irradiation of frozen C₆D₆ solution of 2-³⁵Fe at 77 K, (c) and (d) after warming 4-³⁵Fe up to 200 and 240 K for 48 h, respectively; green, (^{5m}], ⁵⁵Fe(N₃); blue, (^{5m}L)-⁵⁵Fe(N₃); yellow, thermally excited (^{5m}L)-⁵⁶Fe(N); pink, (^{5m}L-NH)Fe; red, fit; and gray, residual.

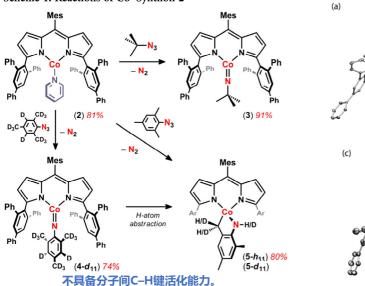


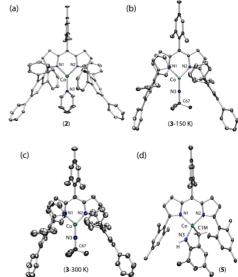
Yellow-excited

单核金属络合物 (Fe)

Communication

pubs.acs.org/JACS


Co(III) Imidos Exhibiting Spin Crossover and C-H Bond Activation


Evan R. King, Graham T. Sazama, and Theodore A. Betley*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States

Supporting Information

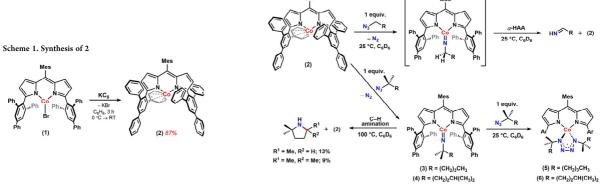
Scheme 1. Reactions of Co¹ Synthon 2

Article

pubs.acs.org/JACS

Catalytic C-H Amination Mediated by Dipyrrin Cobalt Imidos

Yunjung Baek and Theodore A. Betley*®


Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States

3 Supporting Information

ABSTRACT: Reduction of $(^{A}\text{rL})\text{Co}^{\text{II}}\text{Br}$ $(^{A}\text{rL}) = 5\text{-mesityl-1,9-(2,4,6-Ph}_3\text{C}_6\text{H}_3)\text{dipyrin})$ with potassium graphite afforded the novel Co^{II} synthon $(^{A}\text{L})\text{Co}^{\text{II}}$. Treatment of $(^{A}\text{L})\text{Co}^{\text{II}}$ with a stoichiometric amount of various alkyl azides $(N_3\text{R})$ furnished three-coordinate Co^{III} alkyl imidos $(^{A}\text{rL})\text{Co}(N\text{R})$, as confirmed by single-crystal X-ray diffraction (R: CMe_2Bu, CMe_2(CH_2)_2CHMe_2). The exclusive formation of four-coordinate cobalt tetrazido complexes $(^{A}\text{rL})\text{Co}(\kappa^2\text{-N}_4\text{R}_2)$ was observed upon addition of excess azide, inhibiting any subsequent C–H amination. However, when a weak C–H bond is appended to the imido moiety, as in the case of (4-azido-4-methylpentyl)benzene, intramolecular C–H amination kinetically outcompetes formation of the corresponding tetrazene species to generate 2,2-dimethyl-5-phenylpyrrolidine in a catalytic fashion without requiring product sequestration. The imido

J. Am. Chem. Soc. 2019, 141, 7797

Scheme 2. Reactivity between 2 and Various Linear Alkyl Azides

Scheme 3. Intramolecular C-H Amination of Benzylic C-H Bonds

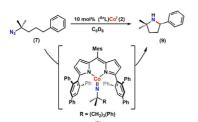
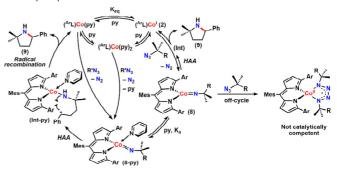



Table 1. Effect of Pyridine Concentration on C-H Amination Reactivity"

entry	$[py-d_5]$ (mM)	rate (mM/min)	yield (%) ^b
1	0	N/A ^c	<10
2	4.3	0.52(3)	21
3	8.5	0.70(5)	22
4	26	0.813(5)	35
5	89	1.12(2)	89
6	174	1.45(4)	91
7	300	1.63(4)	93
8	430	1.77(3)	93

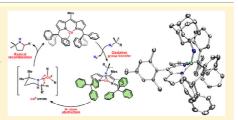
"Reactions were conducted with pyridine- d_s to manipulate kinetic experiments with ¹H NMR spectroscopy. In all cases, [2] = 4.25 mM and [7] = 88.0 mM in benzene d_s at 25 °C. ¹⁰H NMR yields using 1,3.5-trimethoxybenzene as an internal standard. 'Initial rate is not available due to a slower formation of 9 at 25 °C.

Scheme 4. Proposed Catalytic Cycle

- (1) 反应速率对亚胺基浓度为一级,对底物叠氮浓度为零级,证明反应是单分子的分子内过程。
 - (2) KIE≈7.6, 证实C-H键断裂是决速步。8是resting state。
 - (3) Py的加入抑制四氮唑的形成,同时加快反应速率。
 - (4) 与铁相比,无需对产物进行Boc保护来再生催化剂。

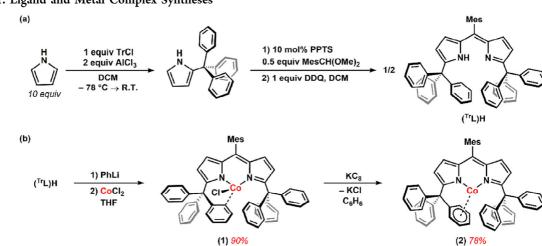
OURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

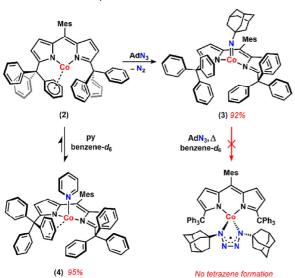

Direct Manipulation of Metal Imido Geometry: Key Principles to Enhance C-H Amination Efficacy

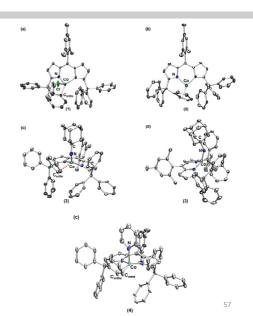
Yunjung Back, Elisabeth T. Hennessy, and Theodore A. Betley*

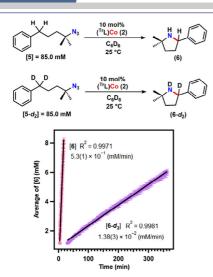
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States


Supporting Information

ABSTRACT: We report the catalytic C–H amination mediated by an isolable Co^{III} imido complex (^{T}L)Co(NR) supported by a sterically demanding dipyrromethene ligand ($^{T}L = 5$ -mesityl-1,9-(trityl)dipyrrin). Metalation of (^{T}L)Li with CoCl₂ in THF afforded a high-spin (S = 3/2) three-coordinate complex (^{T}L)CoCl. Chemical reduction of (^{T}L)CoCl with potassium graphite yielded the high-spin (S = 1) Co^I synthon (^{T}L)Co which is stabilized through an intramolecular η^6 -arene interaction. Treatment of (^{T}L)Co with a stoichiometric amount of 1-azidoadamantane (AdN₃) furnished a three-coordinate, diamagnetic Co^{III} imide (^{T}L)




J. Am. Chem. Soc. 2019, 141, 16944


Scheme 1. Ligand and Metal Complex Syntheses

Scheme 2. Reactivity Assessment of 2

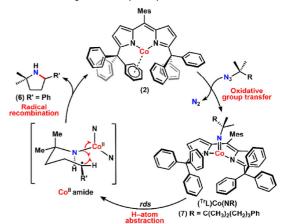


Figure 7. Kinetic isotope effect experiments with 10 mol % of **2** at 25 $^{\circ}$ C in benzene- d_s .

Scheme 3. Proposed Catalytic Cycle

•动力学同位素效应: k_H/k_D = 38.4, 表明C-H键断裂是决速步;

•反应级数分析:对底物为零级,对亚胺基为一级,说明反应为单分子HAA过程; 58

Table 1. Catalytic C-H Amination Using 2 and Alkyl Azides^a

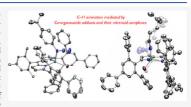
"Isolated yields from reactions conducted with 85.0 mM of azide substrate. b1 mol % of 2. c5 mol % of 2. d10 mol % of 2.

pubs.acs.org/JACS

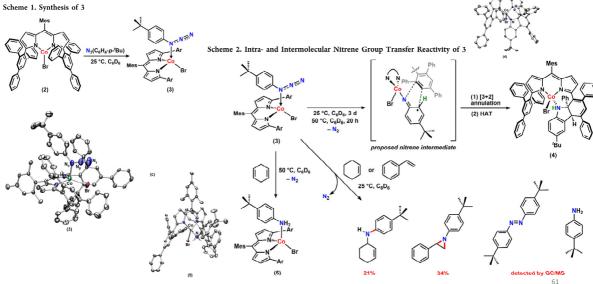
Article

C-H Amination Mediated by Cobalt Organoazide Adducts and the Corresponding Cobalt Nitrenoid Intermediates

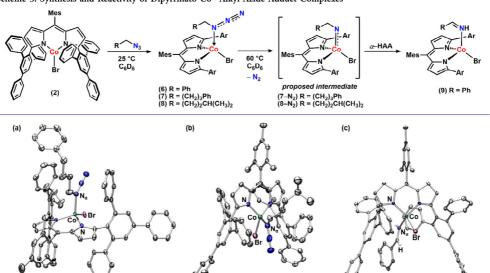
Yunjung Baek, Anuvab Das, Shao-Liang Zheng, Joseph H. Reibenspies, David C. Powers, and Theodore A. Betley*



ACCESS | | Metrics & More


Article Recommendations

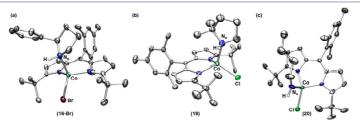
Supporting Information


ABSTRACT: Treatment of $\binom{N_L}{COBr}$ ($\binom{N_L}{COBr}$ ($\binom{N_L}{COBr}$) dipyrrin) with a stoichiometric amount of 1-azido-4-(tert-butyl)benzene $N_3(C_6H_4;p^L)$ furnished the corresponding four-coordinate organoazide-bound complex ($\binom{N_L}{COBr}(N_3(C_6H_4;p^L))$). Spectroscopic and structural characterization of the complex indicated redox innocent ligation of the organoazide. Slow expulsion of dinitrogen (N_2) was observed at room temperature to afford a ligand functionalized product via a [3+2] annulation, which can be mediated by a high-valent nitrene intermediate such as a CO^{III} iminyl ($\binom{N_L}{COBr}(\binom{N_L}{COBr}(\binom{N_L}{COBr}(\binom{N_L}{COBr}(\binom{N_L}{COBr}))$) or CO^{IV} imido ($\binom{N_L}{COBr}(N(C_6H_4;p^L))$) complex. The presence of the proposed intermediate and its viability as a nitrene group transfer

Scheme 3. Synthesis and Reactivity of Dipyrrinato Co^{II} Alkyl Azide Adduct Complexes

Scheme 4. Synthesis of 10, 11, and 12

Figure 7. (a) Solid-state structures for (a) 11, (b) 12, and (c) 14-Br at 100 K with thermal ellipsoids at the 50% probability level (hydrogen atoms and solvent molecules are omitted for clarity; Co, aquamarine; C, gray; N, blue; O, red; and Br, maroon).


Scheme 5. 1,3-Dipolar Cycloaddition Reactivity

Scheme 6. Intramolecular C-H Amination or Activation

(a) C-H amination in the presence of weak C-H bonds at C4 position

(b) α-H-atom abstraction in the absence of weak C-H bonds at C₄ position

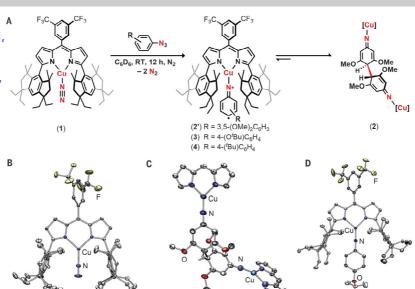
$$\begin{cases} ||\mathbf{G}^{\text{(Bul,]}}\mathbf{C}\mathbf{c}\mathbf{C}\mathbf{I}|_2 \\ ||\mathbf{G}\mathbf{D}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{I}|_2 \end{cases} = \begin{pmatrix} \mathbf{N}_3 & \mathbf{N}_4 & \mathbf{N}_5 & \mathbf{N}_6 & \mathbf{$$

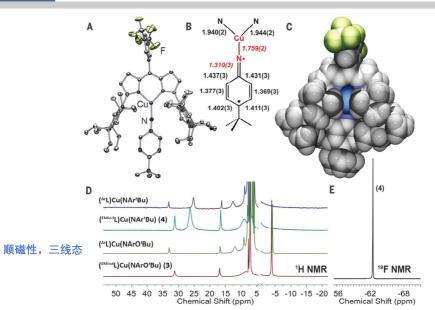
Scheme 8. Proposed Pathways for Intramolecular C-H Amination or Activation

Proposed pathway I: in the presence of weak C-H bonds

Proposed pathway II: in the absence of weak C-H bonds

叠氮加合物本身可以直接作为C-H胺化的试剂, 而不一定需要先解离N₂形成一个离散的高价钴-氮宾中


INORGANIC CHEMISTRY


Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination

Kurtis M. Carsch¹, Ida M. DiMucci², Diana A. Iovan¹, Alex Li¹, Shao-Liang Zheng¹, Charles J. Titus³, Sang Jun Lee⁴, Kent D. Irwin^{3,5}, Dennis Nordlund⁴, Kyle M. Lancaster^{2*}, Theodore A. Betley^{1*}

Terminal copper-nitrenoid complexes have inspired interest in their fundamental bonding structures as well as their putative intermediacy in catalytic nitrene-transfer reactions. Here, we report that aryl azides react with a copper(I) dinitrogen complex bearing a sterically encumbered dipyrrin ligand to produce terminal copper nitrene complexes with near-linear, short copper-nitrenoid bonds [1.745(2) to 1.759(2) angstroms]. X-ray absorption spectroscopy and quantum chemistry calculations reveal a predominantly triplet nitrene adduct bound to copper(I), as opposed to copper(II) or copper(III) assignments, indicating the absence of a copper-nitrogen multiple-bond character. Employing electron-deficient aryl azides renders the copper nitrene species competent for alkane amination and alkene aziridination, lending further credence to the intermediacy of this species in proposed nitrene-transfer mechanisms.

侧基为 EMind基团, 具有庞大的四面体 结构和多个甲基, 能有效屏蔽铜中心, 防止二聚或氮宾解 离。

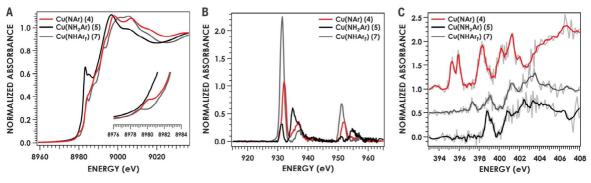
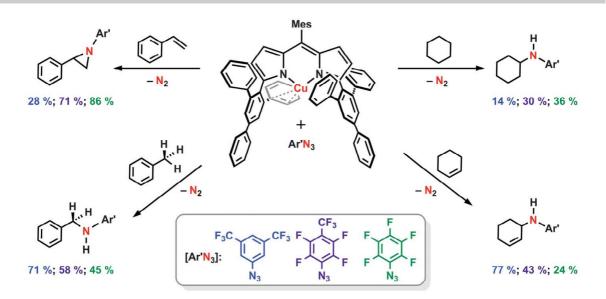


Fig. 4. XAS. (A) Cu K-edge, (B) Cu L_{2.3}-edge, and (C) N K-edge absorption spectra of (EMindL)Cu[N(C₆H₄fBu)] (4, red), (EMindL)Cu[H₂N(C₆H₄fBu)] (5. black), (EMIndL)Cu{HN[3.5-(CF₃)₂C₆H₃]} (7. gray). Light-gray lines in (C) represent experimental data, with colored lines representing smoothed data. 信号非常强。其强度直

•Cu(I) 参考物 5: 吸收边在 8992.1 eV

•Cu(II) 参考物 7: 吸收边在 8995.0 eV

•目标氮宾物 4: 吸收边在 8995.7 eV

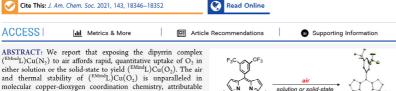

Cu等重金属元素,K-edge能量受配体性质

影响很大,不能单独作为氧化态的绝对判据。

接正比于未占据的3d轨

道的空穴数量。

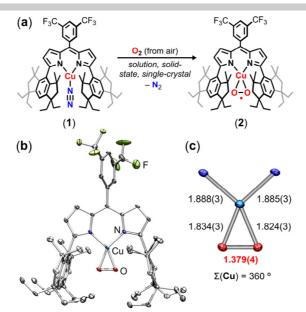
三线态氮宾

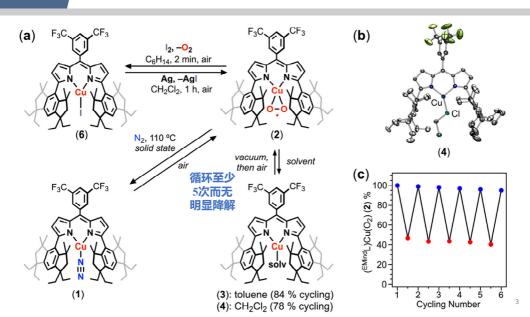


pubs.acs.orq/JACS Articl

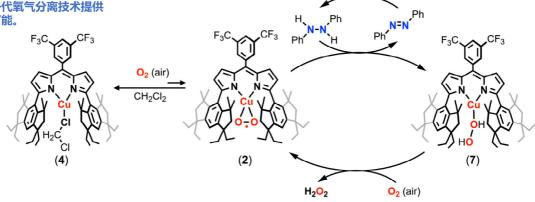
Reversible Scavenging of Dioxygen from Air by a Copper Complex

Kurtis M. Carsch,[‡] Andrei Iliescu,[‡] Ryan D. McGillicuddy, Jarad A. Mason, and Theodore A. Betley*




molecular copper-dioxygen coordination chemistry, attributable to the ligand flanking groups which preclude the $\left[\text{Cu}(O_2)\right]^{1+}$ core from degradation. Despite the apparent stability of $\left[\text{Chind}_1\text{CU}(O_2)\right]$, dioxygen binding is reversible over multiple cycles with competitive solvent exchange, thermal cycling, and redox manipulations. Additionally, rapid, catalytic oxidation of 1,2-diphenylhydrazine to azoarene with the generation of hydrogen

conditions with low-coordinate CuI sorbents.

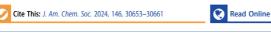

diphenylhydrazine to azoarene with the generation of hydrogen peroxide is observed, through the intermittency of an observable ($^{\text{EMind}}\text{L}$)Cu(H₂O₂) adduct. The design principles gleaned from this study can provide insight for the formation of new materials capable of reversible scavenging of O₂ from air under ambient

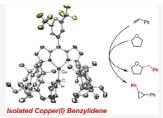
O₂ Manipulation through Solvent, Temperature, and Redox

实现了空气中可逆捕获氧 气这一仿生过程,为开发 下一代氧气分离技术提供 了可能。

various reductants (ref. 45)

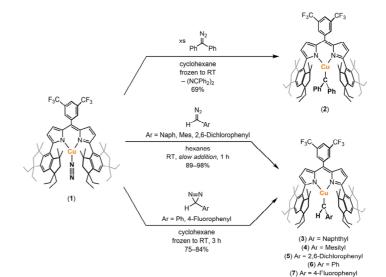
net reaction:

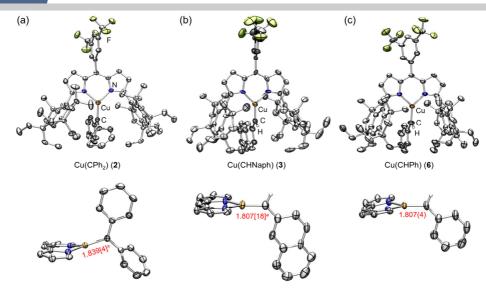

PhNHNHPh +
$$O_2$$
 (air) $\frac{2 \text{ (1 mol\%)}}{\text{CH}_2\text{Cl}_2, 2 \text{ h, RT, air}}$ PhNNPh (94 %) + H_2O_2


pubs.acs.org/JACS Article

C-H Insertion from Isolable Copper Benzylidenes

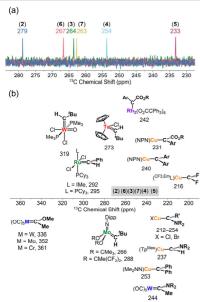
Erika Amemiya, Shao-Liang Zheng, and Theodore A. Betley*


ABSTRACT: Despite the utility of copper catalysts for the insertion of carbene moieties into C–H bonds, the copper carbene intermediate often invoked in these transformations has not been isolated. Herein, we describe the synthesis and structural characterization of a series of copper benzylidenes utilizing the sterically encumbered dipyrrin ligand (EmL)H. These isolated copper carbenes demonstrate intramolecular insertion into the primary C(sp³)–H bond of the ligand (EmL)H and intermolecular insertion into ethereal and allylic C–H bonds. The copper carbenes isolated are best described as Cu(1) carbene adducts akin to canonical Fischer carbenes, given their diamagnetic ground state and electrophilic carbene reactivity. Furthermore, the insertion chemistry can be rendered catalytic utilizing a more sterically exposed dipyrrin ligand (^{AuF}L)H. The ability to isolate and observe stoichiometric C–H insertion and olefin cyclopropanation from well-characterized copper benzylidenes illuminates their viability as catalytic


Supporting Information

J. Am. Chem. Soc. 2024, 146, 30653

Scheme 1. Synthesis of Copper Carbene Complexes



单核金属络合物 (Cu)

Fischer Cu卡宾: Cu-C(carbene) 键长 (~1.807-1.897 Å)

单核金属络合物 (Cu)

Figure 3. ¹³C NMR chemical shifts of carbene carbon resonances for (a) copper carbenes reported in this work and (b) select Schrock alkylidenes (red), Fischer carbenes (blue), olefin metathesis catalysts (green), copper carbenes (orange), rhodium carbene (purple), and copper carbenes reported in this work (shaded gray).

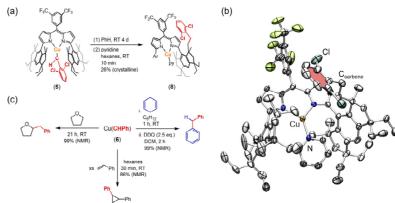


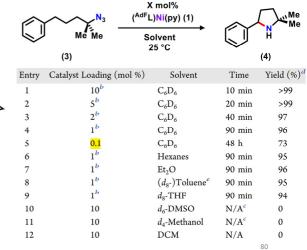
Figure 5. (a) Intramolecular carbene insertion into ligand, forming 8. (b) Solid-state structure of 8 with 50% ellipsoid probability. H atoms and solvent molecules omitted for clarity; carbene aryl group highlighted in red. (c) Stoichiometric intermolecular carbene insertion from isolated copper benzylidene.

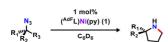
Article

Efficient C-H Amination Catalysis Using Nickel-Dipyrrin Complexes

Yuyang Dong, Ryan M. Clarke, Gerard J. Porter, and Theodore A. Betley*

ABSTRACT: A dipyrrin-supported nickel catalyst (AdFL)Ni(py) (AdFL: 1,9-di(1-adamantyl)-5-perfluorophenyldipyrrin; py: pyridine) displays productive intramolecular C—H bond amination to afford N-heterocyclic products using aliphatic azide substrates. The catalytic amination conditions are mild, requiring 0.1–2 mol% catalyst loading and operational at room temperature. The scope of C—H bond substrates was explored and benzylic, tertiary, secondary, and primary C—H bonds are successfully aminated. The amination chemoselectivity was examined using substrates featuring multiple activatable C—H bonds. Uniformly, the catalyst showcases high chemoselectivity favoring C—H bonds with lower bond dissociation energy as well as a wide range of functional group tolerance (e.g., ethers, halides, thioetheres, esters, etc.). Sequential cyclization of substrates with ester groups could be achieved, providing facile preparation of an indolizidine framework commonly found in a variety of alkaloids. The amination cyclization reaction mechanism was examined employing nuclear magnetic resonance (NMR) spectroscopy to


J. Am. Chem. Soc. 2020, 142, 10996


Scheme 1

Iminyl Formation

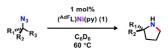
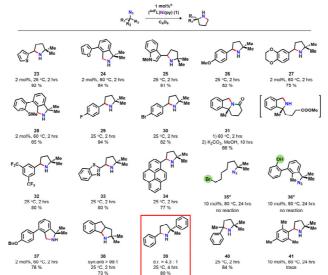
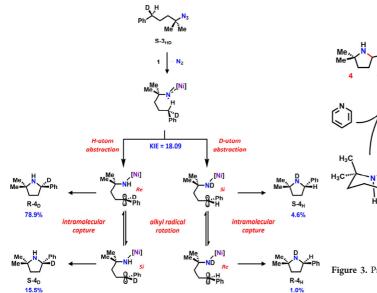

Catalytic Nitrile Formation

Table 1. Optimization of Amination Conditions^a



	112)	
Entry	Substrate	Time (h)	Temperature (°C)	Product	Yield (%
1	Me Me	2	25	N Me Me	95
2	Me Me N ₃	9 ^b /2	25 ^b /60	Me Me NTs	65
3	Me Me N ₃	6	60	N W"Me Me 8	88
4	Me N ₃	24	60	Me NTs	72
5	Me Ne Me	48	80	Me H HCI	35



30 G							
Entry	Substrate	Time (h)	Product	Yield (%) ^b			
1	Me N ₃ Me Me 13	4	NH Me Me	71			
2	Me N ₃ Me	4	NH Me Me	65			
3	Me N ₃ Me	6	Me // Me Me	82			
4	Me N ₃ Me	24	Me Me	85			
5	Me N ₃	24	Me Ts NTS 22a: 22b ^c 2:1	67			

Table 4. Functional Group Tolerance^a

[&]quot;All yields noted are isolated yields. Default catalyst loading (1 mol %) unless noted otherwise. Functional groups detrimental to the catalysis are highlighted in green.

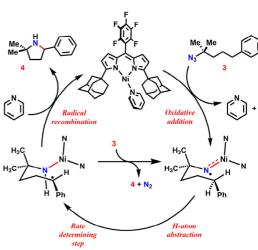


Figure 3. Proposed mechanism for C-H amination.

3_{D2}, KIE=31.9

pubs.acs.org/JACS Article

Enantioselective C—H Amination Catalyzed by Nickel Iminyl Complexes Supported by Anionic Bisoxazoline (BOX) Ligands

Yuyang Dong, Colton J. Lund, Gerard J. Porter, Ryan M. Clarke, Shao-Liang Zheng, Thomas R. Cundari, and Theodore A. Betley*

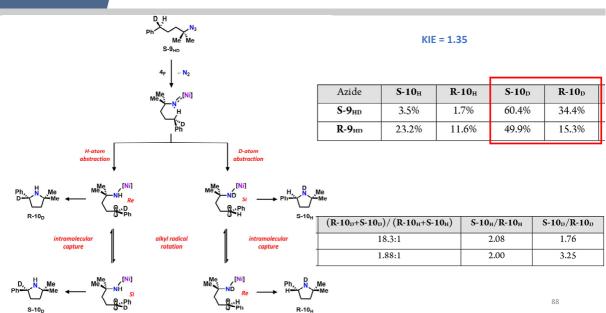
ACCESS

III Metrics & More

Article Recommendations

S Supporting Information

ABSTRACT: The trityl-substituted bisoxazoline ($^{\text{TrH}}BOX$) was prepared as a chiral analogue to a previously reported nickel dipyrrin system capable of ring-closing amination catalysis. Ligand metalation with divalent $Nii_2(py)_4$ followed by potassium graphite reduction afforded the monovalent ($^{\text{TrH}}BOX$)Ni(py) (4). Slow addition of 1.4 equiv of a benzene solution of 1-adamantylazide to 4 generated the tetrazido ($^{\text{TrH}}BOX$)Ni(κ^2 -N₄Ad₂) (5) and terminal iminyl adduct ($^{\text{TrH}}BOX$)Ni(NAd) (6). Investigation of 6 via single-crystal X-ray


$$\begin{array}{c} H & H \\ O & N \\ \hline N & N \\ \hline \end{array}$$

$$\begin{array}{c} A & A & A & A \\ \hline A & A & A$$

Scheme 5

Table 2. Substrate Scope^a

"Isolation yield. b 50 mol % of catalyst was used due to the side product generated by carbocation rearrangement during the substrate preparation through S_N 1 mechanism (see the SI).

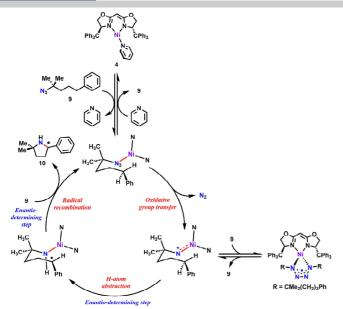
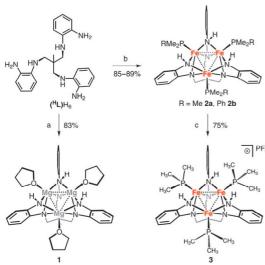


Table 3. Substrate Scope for Catalytic Enantioselective 2,5-Bis-Tertiary Pyrrolidine Synthesis."


Polynuclear Complexes

DOI: 10.1002/anie.201005198

Synthesis and Redox Properties of Triiron Complexes Featuring Strong

Fe-Fe Interactions**

Qinliang Zhao and Theodore A. Betley*

Scheme 1. Conditions: a) 3 equiv nBu_2Mg ; b) 1.5 equiv $[Fe_2\{N-(SiMe_3)_7\}_4]$, 3 equiv PMe_7R ; c) $Fc^+PF_6^-$.

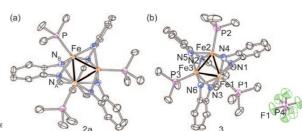
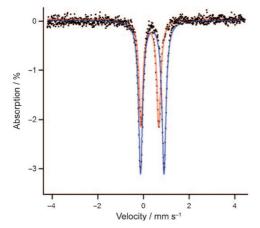



Figure 1. Solid-state molecular structures for a) **2a** and b) **3** with the thermal ellipsoids set at the 50% probability level (hydrogen atoms omitted for clarity; Fe orange, C black, N blue, P magenta, F green). Average bond lengths [Å] for **2a** (from 4 molecules in asymmetric unit): Fe–Fe 2.2995(19), Fe–N $_{\rm A}$ 1.984(8), Fe–N $_{\rm B}$ 2.024(8), Fe–P 2.324(4), N–C $_{\rm Ar}$ 1.411(12), C $_{\rm Ar}$ –C $_{\rm Ar}$ 1.392(14). Bond lengths [Å] for **3**: Fe1–Fe2 2.2499(4), Fe1–Fe3 2.2868(4), Fe2–Fe3 2.2863(5); average bond lengths: Fe–N1,2,3 2.001(2), Fe–N4,5,6 1.986(2), Fe–P 2.363(1), N–C $_{\rm Ar}$ 1.415(3), C $_{\rm Ar}$ –C $_{\rm Ar}$ 1.392(4).

Figure 2. Zero-field ⁵⁷Fe Mössbauer spectra obtained at 77 K for **2** a represented by black dots and spectral fit as solid blue line $(\delta, |\Delta E_Q| \text{ [mm s}^{-1}])$: 0.38, 1.03; and for **3** represented by black dots and spectral fit as solid red line $(\delta, |\Delta E_Q| \text{ [mm s}^{-1}])$: 0.28, 0.78.

多核金属络合物: Fe, Cr, Ni, Mn, Cu, Co

仿生启发性: 向自然学习

(1) 固氮:固氮酶中的铁钼辅因子是一个复杂的多核金属簇,能够在常温常压下将惰性的 N_2 转化为 NH_3 。这是目前任何人造催化剂都无法比拟的。

(2) 光合作用: 光合系统中的放氧中心是一个 Mn₄CaO₅ 簇,通过四核锰中心的协同作用,高效、安全地催化水氧化生成氧气,这是地球上绝大多数生命的能量来源。

(3) 呼吸作用:细胞色素 C 氧化酶中含有双核铜中心和血红素铁中心,协同催化 O_2 的还原。

Proposal