

· Daniele Leonori 课题组工作介绍

指导教师:杨泽鹏 汇报人:林垂毅 2021年11月25日

Daniele Leonori

2007-2010: PhD in University of Sheffield Prof. Iain Coldham
2010-2011: Post-Doctoral Research Associate in RWTH Aachen University Prof. Magnus Rueping
2011-2012: Post-Doctoral Research Associate in Max-Planck Institute for Colloids Prof. Peter H. Seeberger
2012-2014: Research Officer in University of Bristol
2014-2020: Lecturer in University of Manchester
2020-today: Professor in University of Manchester

Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer

Bartosz Górski^{1,3}, Anne-Laure Barthelemy^{® 1,3}, James J. Douglas^{® 2}, Fabio Juliá^{® 1⊠} and Daniele Leonori^{® 1⊠}

The success of these transformations generally relies on the ability of Cu(II) complexes to trap carbon radicals at near diffusion-controlled rates, and then undergo facile reductive elimination from the resulting high-valent Cu(III) species

 $E_{\rm red} < -2V$ for unactivated alkyl halide

Alkyl radicals can be accessed from the corresponding halides by exploiting the ability of α -aminoalkyl radicals to trigger halogen-atom-transfer (XAT) reactions.

а

Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides

Timothée Constantin¹, Margherita Zanini¹, Alessio Regni¹, Nadeem S. Sheikh², Fabio Juliá¹*, Daniele Leonori¹*

Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward *contra*-Thermodynamic Olefins

Huaibo Zhao,[†] Alastair J. McMillan,[†] Timothée Constantin, Rory C. Mykura, Fabio Juliá, and Daniele Leonori*

Direct HAT

 R_3 N is cycled

Scheme 4. (A) Proposed HAT-Based Approach to Control the Desaturation Selectivity by Exploiting Polar and Steric Effects and (B) Substrate Scope and Selectivity Using Unsymmetrical Alkyl Halides and Different Cobaloximes

[Co(III)]-alkyl species (F) have weak sp^3 C–Co bonds (BDE < 30 kcal/mol)that, upon blue light irradiation, readily homolyze to a [Co(II)]/alkyl radical cage

Visible-Light-Mediated Synthesis of Amidyl Radicals: Transition-Metal-Free Hydroamination and N-Arylation Reactions

Jacob Davies,^{†,§} Thomas D. Svejstrup,^{†,§} Daniel Fernandez Reina,[†] Nadeem S. Sheikh,[‡] and Daniele Leonori^{*,†}

B) This work:

Amidyl radical is electrophile

Scheme 2. Proposed Photoredox Cycle for the Hydroamination-Cyclization Reaction

 $X / / / \lambda$

Scheme 5. Photoredox N-Arylation Reaction

A) Proposed photoredox N-arylation reaction

Photoinduced Remote Functionalisations by Iminyl Radical Promoted C-C and C-H Bond Cleavage Cascades

Elizabeth M. Dauncey⁺, Sara P. Morcillo⁺, James J. Douglas, Nadeem S. Sheikh, and Daniele Leonori^{*}

upon SET reduction and fragmentation of precursor A, the iminyl radical B should undergo a fast β -fission generating the δ -CN radical C(nucleophilic)

Owing to its electrophilic nature, a final SET oxidation will be highly endergonic, thus thwarting the development of a redoxneutral process

Photoredox Imino Functionalizations of Olefins

Jacob Davies, Nadeem S. Sheikh, and Daniele Leonori*

This divergent strategy features the oxidative generation of iminyl radicals and subsequent cyclization/radical trapping

Y radical is electrophile

A) Substrate design for oxidative generation of iminyl radiclas

Visible-Light-Mediated 5-exo-dig Cyclizations of Amidyl Radicals

Daniel Fernandez Reina,^[a] Elizabeth M. Dauncey,^[a] Sara P. Morcillo,^[a] Thomas D. Svejstrup,^[a] Mihai V. Popescu,^[a] James J. Douglas,^[b] Nadeem S. Sheikh,*^[c] and Daniele Leonori*^[a]

A) Proposed photoredox mechanism

This is particularly evident when alkyl and acyl substituents are present at the N atom, as they increase the electrophilic character of the NCR. Furthermore, as radical 5-exo-dig cyclizations are slower than 5-exo-trig cyclizations, this could result in significant quantity of unproductive H-atom abstraction.

A) Screening of reaction conditions

Me N OAr			P 1,4-CHD (2.0 d	v.) Me. N	
1a Ar = 2,4-(NO ₂) ₂ -C ₆ H ₃			solve visib	2a	
	Entry	PC	Base	Solvent (M)	Yield (%)
	1	EY	K ₂ CO ₃	acetone (0.1)	43%
	2 ^[a]	EY	K ₂ CO ₃	acetone (0.1)	traces
	3	-	K ₂ CO ₃	acetone (0.1)	41%
	4	-	K ₂ CO ₃	acetone (0.05)	63%
	5	-	Cs_2CO_3	acetone (0.1)	52%
	6	-	Et ₃ N	acetone (0.1)	25%
	7	-	K ₂ ČO ₃	CH ₃ CN (0.1)	44%
	8	_	K ₂ CO ₃	DMSO (0.1)	56%
	9	_	K ₂ CO ₃	toluene (0.1)	56%
	10	-	K ₂ CO ₃	CHCl ₃ (0.1)	8%

[a] The reaction was run in the dark.

B) Concentration studies

5

A) Scope evaluation

Scheme 4. Scope of the 5-exo-dig hydroamination via amidyl radicals.

Visible-Light-Mediated Reactions of Electrophilic Radicals with Vinyl and Allyl Trifluoroborates

Daniel Fernandez Reina,^{†,¶} Alessandro Ruffoni,^{†,¶} Yasair S. S. Al-Faiyz,[‡] James J. Douglas,[§] Nadeem S. Sheikh,^{*,‡} and Daniele Leonori^{*,†}

Synthesis of Arylamines via Aminium Radicals

Thomas D. Svejstrup, Alessandro Ruffoni, Fabio Juliá, Valentin M. Aubert, and Daniele Leonori*

protonated electron-poor O-aryl hydroxylamines give aminium radicals in the presence of $Ru(bpy)_3Cl_2$. These highly electrophilic species undergo polarized radical addition to aromatic compounds in high yield and selectivity.

C) This work: Photoinduced synthesis of arylamines - Umpolung Strategy

by the intrinsic nucleophilic nature of aminyls, which causes repulsive interactions between their lone pair and the aromatic ring A) Possible strategies for aminium radical generation and N-arylation

B) Optimisation of the process using 1a

Ar

۲ C) Proposed productive pathways leading to the formation of products 3-H+ -Ru^(II) SET photoredox 5 *Ru^(II) Ru^(III) cycle radical chain \odot € SET propagation H OAr H ÓAr н electron 1a-H⁺ 1a 4 Ru^(III) Ru^(II) relay cycle 5 SET SET 1a–H⁺ 3-H+ 5 3-H+ Me Me Me Me, Me MeO CO₂Me from dextromethorphan OMe · from gemfibrozil methyl ester **30**, 90% sedative and anti-cough 3z, 50% lipid lowering drug 3at, 44% 3as, 43%

Reaction of Nitrogen-Radicals with Organometallics Under Ni-Catalysis: N-Arylations and Amino-Functionalization Cascades

Ar-O

Lucrezia Angelini⁺, Jacob Davies⁺, Marco Simonetti, Laia Malet Sanz, Nadeem S. Sheikh, and Daniele Leonori^{*}

iminyl

amidyl

a strategy for the generation of nitrogen-radicals by ground-state single electron transfer with organyl–Ni(I)species

C) Generation of N-radicals via SET reduction of N–OAr electrophores

$\swarrow \langle \langle \rangle \rangle \land \rangle \land \rangle$

B) Screaning of phenyl-organometallics

A) Proposed mechanism for cyclization-arylation cascades with amidyl radicals

A dual photoredox-nickel strategy for remote functionalization *via* iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades[†]

Elizabeth M. Dauncey, (10 ‡ª Shashikant U. Dighe, (10 ‡ª James J. Douglas (10 b) and Daniele Leonori (10 *ª

Entry	PC	[Ni]	Base	Solvent	Yield (%)
1	PC1	NiCl ₂ •glyme	K ₂ CO ₃	DME	15
2	PC2	NiCl ₂ •glyme	K ₂ CO ₃	DME	-
3	PC3	NiCl ₂ •glyme	K ₂ CO ₃	DME	24
4	PC4	NiCl ₂ •glyme	K ₂ CO ₃	DME	41
5	PC4	NiCl ₂ •glyme	Cs ₂ CO ₃	DME	35
6	PC4	NiCl ₂ •glyme	K ₂ HPO ₄	DME	-
7	PC4	NiCl ₂ •glyme	DBU	DME	38
8	PC4	NiCl ₂ •glyme	TMG	DME	55
9	PC4	NiBr ₂ •glyme	TMG	DME	39
10	PC4	Ni(acac) ₂	TMG	DME	-
11	PC4	Ni(OAc) ₂ •4H ₂ O	TMG	DME	12
12	PC4	NiCl ₂ •glyme	TMG	acetone	41
13	PC4	NiCl ₂ •glyme	TMG	DMF	23
14	PC4	NiCl ₂ •glyme	TMG	EtOAc	61
15	-	NiCl ₂ •glyme	TMG	EtOAc	-
16	PC4	-	TMG	EtOAc	-
17	PC4	NiCl ₂ •glyme	-	EtOAc	-
18 ^a	PC4	NiCl ₂ •glyme	TMG	EtOAc	-

^a The reaction was run in the dark

PC1: (Ir[dF(CF₃)ppy]₂(dtbpy)(PF₆) PC2: MesAcr(CIO₄) PC3: 4CzIPN PC4: [lr(dtbbpy)(ppy)₂]PF₆

Photoinduced decarboxylative azidation of cyclic amino acids†

David C. Marcote,^a Rosie Street-Jeakings,^a Elizabeth Dauncey, ^D^a James J. Douglas, ^D^b Alessandro Ruffoni ^D*^a and Daniele Leonori ^D*^a

Extension of this methodology to non-cyclic amino acids is a current limitation of the protocol and despite extensive reoptimization of the process we did not manage to achieve the decarboxylative azidation of, for example, protected phenylalanine

Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals

Sara P. Morcillo⁺, Elizabeth M. Dauncey⁺, Ji Hye Kim, James J. Douglas, Nadeem S. Sheikh, and Daniele Leonori^{*}

The process is based on the oxidative generation of electrophilic amidyl radicals and their subsequent transposition by 1,5-H-atom transfer, resulting in remote fluorination, chlorination and, for the first time, thioetherification, cyanation, and alkynylation.

C) This work: remote functionalizations of amides and amines

Practical and regioselective amination of arenes using alkyl amines

Alessandro Ruffoni^{1,3}, Fabio Juliá^{1,3}, Thomas D. Svejstrup¹, Alastair J. McMillan¹, James J. Douglas² and Daniele Leonori¹

Entry	Acid	Solvent	Amination 4 (%) (p:m)	Chlorination 4' (%)	Amination 5 (%) (p:o)	Chlorination 5' (%)
200	••• •••••••••••					
1	AcOH	CH ₃ CN	-	-	-	-
2	TFA	CH ₃ CN	-	-	-	17
3	p-TsOH	CH ₃ CN	-	-	-	90
4	HCIO ₄	CH ₃ CN	71 (3:1)	-	94 (3:2)	-
5	HCIO ₄	HFIP	98 (7:1)	-	-	79
6	TFA	HFIP	88 (10:1)	-	-	55

 $HClO_4$ as the optimum acid and CH_3 CN or HFIP as the solvent of choice depending on the electron density of the arene partner, CH_3 CN for highly electron-rich aromatics and HFIP for weakly electron-rich ones.

A photochemical dehydrogenative strategy for aniline synthesis

Shashikant U. Dighe¹, Fabio Juliá¹, Alberto Luridiana¹, James J. Douglas² & Daniele Leonori¹

V///

Owing to the enhanced acidity of the β -methylene unit in the enaminium radical B, a deprotonation can take place, leading to the nucleophilic $5\pi e - \beta$ -enamine radical C

