"Chiral-at-Metal" Transition Metal Catalysts

Character introduction

Prof. Dr. Eric Leif Meggers

▶ 教育和研究经历

1995 波恩大学 学士学位
1995-1999 巴塞尔大学 博士学位 (Bernd Giese教授)
1999-2002 Scripps研究所 博士研究员 (Peter G. Schultz教授)
2002-2007 宾夕法尼亚大学 助理教授
2007-至今 德国马尔堡大学 教授
2011-至今 厦门大学 教授

▶ 研究方向

- 手性金属催化剂设计
- 铁的可持续催化
- 立体控制有机光化学
- 立体控制电化学
- 对映选择性氮烯化学

02 "Chiral-at-metal" catalysts

Contents

- ✓ Ir-catalyzed reactions
- ✓ Rh-catalyzed reactions
- ✓ Ru-catalyzed reactions
- ✓ Fe-catalyzed reactions

03 proposal

01 The research content of this group

 Other Previous Projects: Biased towards biochemistry. (PhD research and postdoctoral research)
 Inert Metal Complexes as Enzyme Inhibitors

- Exclusive metal-centered chirality (structural function)
- Activation by metal coordination (catalytic function)
- Optional activation by visible light (photoredox function)

□ Previous work on octahedral chiral-at-metal catalysts with exclusively achiral ligands.

□ Previous work on octahedral chiral-at-metal catalysts with exclusively achiral ligands.

□ Challenges

✔ 简便的合成方法

- ✔ 合适的金属络合物骨架,必须在结构上完全惰性才能保留中心金属的手性信息
- ✔ 除了产生空位的不稳定配体外,这些配体还用于试剂底物的催化活化

Ma, J. J. Am. Nat Protoc. 2018, 13, 605–632.

(1) Asymmetric photocatalysis: Bis-cyclometalated iridium(III) or rhodium(III) complexes. 将光活化与不对称催化相结合

□ Advantages

- ✔ 通过柱层析即可以高收率获得两种非对映异构体
- ✓ 具备合适的金属络合物骨架(强σ-供体苯基配体产生了强配体场和高配体活化能),在结构上 完全惰性,保持催化剂的手性。仅使用非手性配体构建金属手性中心,避免可将光照射下导致 金属络合物的快速外消旋化。
- ✔ 除了产生空位的不稳定配体外,这些配体还用于试剂底物的催化活化。

Superimposed crystal structure Λ-RhS (gray) Δ-RhO (green)

d(C-S) > d(C-O)

□ 位阻效应: 苯并噻唑络合物比苯并噁唑络合物提供更高的立体选择性, 是更优异的不对称催化剂

Ir cata.	Rh cata.					
构型稳定性更高,允许 高温反应(70-80℃)	配体交换动力学更快, 允许低温反应					
催化剂坚固 许多反应,无需严格排除空气与水分						

(2) Asymmetric Nitrene-Mediated C-H Aminations and Oxygenations: the chiral-at-metal ruthenium complexes & iron complexes

Part 02

"Chiral-at-metal" catalysts

α-Fluorination Reaction

a) MacMillan^[14]: Enantioselective Organocatalytic α-Fluorination of Cyclic Ketones

b) Sodeoka^[11a]: Asymmetric Fluorination of α-Aryl Acetic Acid Derivatives

α-芳基乙酸衍生物(羰基α位无支链的 高度活化的羰基化合物)

- 14 -

α-Fluorination Reaction

c) This work: Asymmetric Fluorination of 2-Acetic imidazole Derivatives

- 15 -

- 17 -

a-Alkylation Reaction

02 Rh-catalyzed reactions

Crystal structure of the propellershaped catalyst Δ -**Rh**.

镧系元素收缩 40 锆 41 铌 42 钼 43 锝 44 钉 45 铑 39 钇 Y Zr Nb Ru Rh Mo TC 92.9064 95.94 91.22 101.07 102.906 88.906 99 71 镥 72 铪 73 钽 74 钨 75 铼 76 锇 77 铱 Hf Та W Os Lu Re Ir 178.4 180.947 183.8 186.207 190.2 192.2 174.96

Δ-Rh、Δ-Ir: 几乎相同的结构

铑催化剂优于铱催化剂

更快的配体交换动力学,允许更高的周转频 率和周转数

02 Rh-catalyzed reactions

■ Ground state Activation of substrate towards redox & radical chemistry

Primary photochemistry [Rh-sub]* as intermediate in asymmetric catalysis cycle

 Secondary photochemistry
 i) [Rh-sub]* induces chain process or generates reactant
 ii) Dual catalysis with add. photocat

b) PRIMARY ASYMMETRIC PHOTOCATALYSIS

SECONDARY ASYMMETRIC PHOTOCATALYSIS

02 Rh-catalyzed reactions

cyclometalated rhodium-substrate complexes.

Ground state

Haoran Zhang. Org. Chem. Front. 2019, 6, 3683–3687.

Mechanism

Rh催化剂 提供了较高的对映选择性

E型模式

Entry	Nucleophile	Product	Catalyst ^b	T^{ϵ} (°C)	Yield (%)	ee ^{<i>d,e</i>} (%)
1		N CH3 NH	Δ -Ir (1.0) Δ -Rh (1.0)	Rt (20 h) Rt (40 h)	97 94	$\stackrel{96}{\longrightarrow} \qquad \stackrel{Nu-H}{\bigvee} \stackrel{Nu-H}{\longrightarrow} \stackrel{Nu-H}{\longrightarrow} \stackrel{Nu-H}{\bigvee} \mathsf$
2	NC^CN		Δ -Ir (1.0) Δ -Rh (1.0)	Rt (16 h) Rt (16 h)	96 96	4 ($R^1 = R^2 = Me$) 5a-f 4' ($R^1 = Ph, R^2 = iPr$)
3	NC^CN		Δ- Ir (1.0) Δ- Rh (1.0)	Rt (96 h) Rt (28 h)	40 91	⁸⁸ 95 Guo-Qiang Xu. <i>Chem.</i> Sci. 2015 6, 1094, 1100
4	\sim		Δ - Ir (1.0) Δ - Rh (1.0) None Δ - Rh (1.0) Δ - Rh (2.0)	Rt (16 h) Rt (16 h) Rt (16 h) 5 (16 h) Rt (6 h)	99 99 8.5 97 96	68 85 N.d. ^g 94 95
5	OtBu		Δ- Ir (1.0) Δ- Rh (1.0)	Rt (96 h) Rt (48 h)	41 83	97 (3 : 1 dr) ^h 99 (4 : 1 dr)
6	OtBu	(N,N)-3e O CH ₃ O N O OtBu (R,R)-5f	Δ- Ir (1.0) Δ- Rh (1.0)	Rt (72 h) Rt (20 h)	89 92	97 (10 : 1 dr) ^h 96 (14 : 1 dr) - 26 -

a-Aminations Reaction

Entry	Starting Cpds	Product	Catalyst (mol%)	Time (h)	$\operatorname{Yield}^{b}(\%)$	ee ^c (%)
1	$\mathbf{R} = \mathbf{Ph} \ (\mathbf{6a})$	(R)-7 a	Λ-Ir (2.0)	3	86	92 (>99.5)
			Λ -Rh (0.2)	4	88	96 (>99.5)
			Λ -Rh (0.1)	15	83	94 (>99.5)
			None	11	4	N.d. ^d
2	R = 2-MePh (6b)	(R)-7 b	Λ -Ir (2.0)	5	81	91 (>99.5)
			Λ -Rh (0.2)	4	84	94 (>99.5)
3	R = 4-MeOPh (6c)	(R)-7c	Λ -Ir (2.0)	4	87	95 (99)
			Λ -Rh (0.2)	6	85	97 (99)
4	R = 4-ClPh (6d)	(R)-7 d	Λ -Ir (2.0)	5	82	79 (84)
			Λ -Rh (0.5)	8	83	95 (97)
5	$\mathbf{R} = 2$ -Naph (6e)	(R)-7e	Λ -Ir (2.0)	4	83	90 (>99.5)
			Λ -Rh (0.2)	6	86	96 (99)
6	$\mathbf{R} = 3$ -thienyl (6f)	(R)-7 f	Λ -Ir (2.0)	8	71	80 (94)
			Λ -Rh (0.2)	12	64	90 (97)
7	$\mathbf{R} = \mathbf{Me} \ (\mathbf{6g})$	(R)-7g	Λ -Ir (2.0)	16	85	91
			Λ -Rh (1.0)	22	95	92

^{*a*} Reaction conditions: to **6a–g** (0.20 mmol) in anhydrous *i*PrOH (0.10 mL, 2.0 M) was added the catalyst, stirred at room temperature for 30 min, before dibenzyl azodicarboxylate (0.40 mmol) was added and the reaction was stirred for the indicated time at 20 °C. ^{*b*} Isolated yields. ^{*c*} Enantiomeric excess determined by HPLC on chiral stationary phase. Enantiomeric purities after washing with Et_2O/n -hexane (1:4) are provided in brackets. ^{*d*} Not determined.

▶ 通过用Et₂O/正己烷(1:4)洗涤产物,可提高ee值,进而几乎完全实现对映纯度。

Secondary asymmetric photocatalysis

Rhodium-substrate complexes react with photogenerated reactive intermediates

- 29 -

Mechanism

 \checkmark Rhodium enolate complexes react with iminium ions

烯醇化物作为亲核试剂与光氧化生亚氨基离子(亲电试剂)反应

亲电试剂由来:由烯酮铑中间体所具有的氧化性,对不利于与烯 醇铑中间体反应富电子的α-氨基烷基化合物进行氧化,生成亚 胺离子中间体,以促进催化循环。

- 31 -

- 32 -

Enantioselective conjugate radical additions (Giese反应)

^{Me} Haohua Huo. *J. Am. Chem. Soc.* **2016**, 138, 6936–6939.

Table 1. Initial Experiments To Identify an Optimal Catalyst/Sensitizer Combination^a

- 在没有手性路易斯酸Δ-RhS的情况
 下,自由基加成产物3c仍然以29%
 的产率产生(外消旋混合物)。
- Δ-RhS必须强烈加速自由基的加成,
 以克服主要的外消旋副反应。

双催化剂:

- ✔ 铑催化过程中优异的周转频率
- ✓ 补偿铑体系的有限光化学性质

Mechanistic Experiments

Mechanistic Experiments

A set of reactions based on the above method a) Radical translocation COOEt EtOOC OH Aux Me Me Me 10c 1,5-HAT Me fac-lr(ppy)3 Me 14 (1 mol%) Me Ò-Me △-RhS (8 mol%): 70% yield, 92% ee r.t., CFL 13 without [Rh]: 75% yield, 0% ee b) Three-component photoredox chemistry 4.4'-difluorobenzil P_nF_{2n+1} $C_n F_{2n+1}$ (25-40 mol%) C_nF_{2n+1} C_nF_{2n+1}SO₂Na 5-7 °C Λ - or Δ -RhS blue LEDs Me 17 15 (4-8 mol%) up to 86% yield up to 98% ee d) Decarboxylative generation of radical **EtOOC** COOEt Me Me $-CO_2$ Aux PG Λ - or Δ -RhS Y = H or F V-R4 21

(8 mol%)

r.t., CFL

20

PG

- 36 -

up to 89% yield, up to 97% ee

Primary asymmetric photocatalysis

Photoexcited Rhodium-substrate complexes are part of the asymmetric catalytic cycle

- 39 -

✓ Stereoselective direct bond formations of photoexcited rhodium–substrate complexes

- 42 -

Intermolecular [2+2] **Photocycloadditions**

a) Chiral Lewis acid catalysis activated by UV-light

Bach局限: 紫外线、低温和高催化剂负载量

b) Chiral Lewis acid / photosensitizer dual catalysis activated by visible light

Role of Lewis acid: Lowering of triplet energy of Sc-coordinated substrate

c) Chiral Lewis acid catalysis activated by visible light (this work)

direct visible light activation

Role of Lewis acid: Direct visible light excitation of Rh-substrate complex

Yoon局限:两种催化剂、底物范围 有限2'-hydroxychalcones(2-羟基查 尔酮,黄酮类化合物的一种重要中 间体)

Xiaoqiang Huang. J. Am. Chem. Soc. 2017, 139, 9120–9123.

- 单一催化剂
- 底物/手性路易斯酸(CLA)复合物被可见光直接活化

Condition optimization and substrate range

Mechanistic Experiments

Mechanistic Experiments

Electricity-driven asymmetric Lewis acid catalysis

- Electricity-driven asymmetric catalysis
- Green cross-coupling of enolates
- All-carbon quaternary centres
- 38 examples, 90 to >99% e.e.

Xiaoqiang Huang. *Nat Catal.* **2019**, 2, 34–40.

Strategies for electrochemical asymmetric catalysis with anodic processes.

- a) 手性胺催化剂和烯胺中间体的氧化敏感性, 底物受限
- b) 活性不对称催化剂由电化学产生,与电极的直接相互作用需要氧化还原手性催化剂,因此得到 较低的对映选择性,必须使用额外的氧化还原介质以提高对映选择性
- c) 使用单一催化剂,该催化剂不仅提供不对称诱导,而且通过一种底物的活化促进电化学过程-49-

Table 1 Electrochemical asymmetric enolate cross-coupling						
	N N N Ph 1a	Ph OTMS Ca + Ph 2,6-L THF/ 2a 3 (o)	$\begin{array}{c} R \\ Me \\ Me \\ Me \\ MeOH, TBAPF_6, r.t. \\ Constant 0.6 mA \\ 2.4-2.8 F mol^{-1} \\ ptimal conditions) \end{array}$	Kr1: M = Ir, R = ¹ B Rh1: M = Rh, R = Rh2: M = Rh, R =	PF ₆ -	
Entry	Catalyst	Electrodes	Deviations from optimal conditions		Yield (%) ^a	e.e. (%) ^ь
1	Δ -lr1	BDD-Pt	None		27	98
2	Δ -Rh1	BDD-Pt	None		45	97
3	Δ -Rh2	BDD-Pt	None		82	97
4	Δ -Rh2	Pt-Pt	None		<10	ND
5	Δ -Rh2	RVC-Pt	None		80	93
6	Δ -Rh2	Graphite-Pt	None		82 (79) ^c	97
7	Δ -Rh2	Graphite-Pt	$LiCIO_4$ instead of TBAPF ₆		79	95
8	Δ -Rh2	Graphite-Pt	$TBABF_4$ instead of $TBAPF_6$		44	95
9	Δ -Rh2	Graphite-Pt	Constant 1.5 mA		80	96
10 ^d	Δ -Rh2	Graphite-Pt	Constant 0.8 V vs Ag/AgCl		72	97
11 ^e	None	Graphite-Pt	None		0	NA
12	Δ -Rh2	Graphite-Pt	Without 2,6-lutidine		46	96
13 ^f	Δ -Rh2	None	O_2 (balloon), 21W CFL without electricity and	electrolyte	11	86
14 ^g	Δ -Rh2	None	CAN (2.0 equiv.) without electricity and electro	olyte	8	81

Reaction conditions: in an ElectraSyn 2.0 cell, **1a** (0.10 mmol), **2a** (0.60 mmol), catalyst (5.0 mol%), 2,6-lutidine (0.20 mmol) and TBAPF₆ (0.30 mmol) in THF/MeOH (1.0/2.0 ml) were electrolysed under a constant current of 0.6 mA with an electricity consumption of 2.4–2.8 F mol⁻¹. *Nuclear magnetic resonance yields. ^be.e. was determined by high-performance liquid chromatography analysis on a chiral stationary phase. ^cIsolated yield indicated in the parentheses. ^dAn Ag/AgCI reference electrode was applied with the consumption of 1.8 F mol⁻¹ of current. *Homocoupling of **2a** was the major side reaction. ¹Conversion of 27% with the formation of 1-phenyl-2-(1-phenyl-1*H*-imidazol-2-yl)ethane-1,2-dione in 9% yield. [#]Decomposed. CAN, ceric ammonium nitrate; CFL, compact fluorescent lamp ; ND, not determined; NA, not applicable; r.t., room temperature; BDD, boron-doped diamond; RVC, reticulated vitreous carbon; TBAPF₆, tetrabutylammonium hexafluorophosphate; TBABF₄, tetrabutylammonium tetrafluoroborate.

13和14这些结果突出了电化学在催化不对称杂环方面在转化率、产率和对映选择性 方面的独特优势。电子的受控电化学递送确保了在温和的氧化还原条件下的清洁转-50-化,而不会形成在光氧化还原条件或用化学氧化剂观察到的不期望的副产物。

- 52 -

Mechanism

02 Ru-catalyzed reactions

Chiral metal-salen complexes M = Ru^{II}, Mn^{III}, Ir^{III}

Chiral half-sandwich complexes M = Ru^{II}, Ir^{III}, Rh^{III}

Chiral paddle-wheel complexes $M_2 = Rh^{II} - Rh^{II}, Ru^{II} = Ru^{III}$

Chiral-at-ruthenium catalysts for nitrene-mediated asymmetric C–H functionalizations

Chen-Xi Ye. Acc. Chem. Res. 2023, 56, 1128–1141.

- 57 -

(b) Enzymatic catalysis: Arnold, 2019

Mechanism

▶ N-苯甲酰氧基脲手性2-咪唑烷酮

Zijun Zhou. Chem. 2020, 6, 2024–2034.

▶ N-苯甲酰氧基氨基甲酸酯手性环状氨基甲酸酯

Yuqi Tan. Org. Lett. 2020, 22, 6653–6656.

Mechanistic Experiments

非环状产物的不对称C-H胺化反应

1,3-Nitrogen Shift
✓ Cyclic TS: high regio- and stereocontrol
✓ No ring-closing: acyclic product

Selected examples:

Origin of stereocontrol (calculated transition structures):

TS-I

TS-II' (disfavored)

Asymmetric C–H oxygenation

a) Synthesis of enantioenriched cyclic carbonates

Previous work

Mechanistic Experiments

C(sp³)–H oxygenation for accessing chiral lactones:

- 70 -

Non-C2-Symmetric Chiral-at-Ruthenium Catalyst

Table 1. Comparison of Different Ruthenium Catalysts^a

,-----

M 	R R R R R R R R R R R R R R	$R^{1} (BF_{4})$ $R^{2} = tBu$ $R^{2} = tBu$ $R^{2} = Me$ $H, R^{2} = Me$)2 Mes Mes Previ	$h = \frac{1}{2} $	k ³ (PI	⁼ 6)2 ign
Ph	~~~~N 5a ~~	Ru cat. Pr		=0 + Ph	~~r	1CO
				yield (%) ^b		
ntry	catalyst	loading (mol %)	$^{T}_{(^{\circ}C)}$	6a	7	er ^c
1	Λ -rNHCRu	0.5	rt	93 (92) ^d	6	95:5
2	Λ -Ru2	0.5	rt	92 (91) ^d	7	94:6
3	Λ-Ru3	0.5	rt	$84 (82)^d$	15	92:8
4	Λ -Ru4	0.5	rt		>99	
5	Λ-Ru5	0.5	rt		>99	
6	Λ -Ru6	0.5	rt		>99	
7	Λ-rNHCRu	0.5	4	95 (95) ^d	5	96:4
8 ^e	A-rNHCRu	0.1	4	95 (95) ^a	5	96:4
9	Λ-rNHCRu	0.05	4	93 (93) ^a	7	95:5

e

Mechanism

- a) C2对称催化剂有利于Curtius副产物
- b) KIE: 单重态氮宾插入具有协同的N-C 和N-H 形成途径
- c) 两个对映体C-H键之间的高度立体化学区别,两种不同催化剂对产率影响较大
- d) PPh3成功捕获氮宾中间体

C2-对称催化剂

02 Fe-catalyzed reactions

a) Enantioselective ring-closing nitrene insertion

b) This work: Enantioselective & enantioconvergent Fe catalysis

a.) Desirable features for C-H functionalization methods

- (1) Avoiding noble metals
- (2) Cheap, nontoxic and readily available catalyst
- (3) Functionalization of non-activated C(sp³)-H bonds

b.) This work: Efficient C-H amination with simple Fe catalyst

c.) Representative imidazolidinone-based pharmaceuticals

Yubiao Hong. J. Am. Chem. Soc. 2019, 141, 4569–4572.

不对称催化四齿非C2-对称Fe(II)-配合物中立体诱导的对称性

Philipp S. Steinlandt. Eur. J. Org. Chem. 2023, e202300296.

- 84 -

a) C_2 -/pseudo- C_2 -symmetric vs non- C_2 -symmetric, tetradentate, linear N4-type complexes

b) Selected examples of linear, N4-type, non- C_2 -symmetric catalysts

a) Linear tetradentate helical chirality vs tripodal pentadentate chirality

b) Realization: Controlling stereocenter with chiral lever group

a.) Chiral-at-iron catalyst scaffold

b.) This work: Influence of NHC substituents on enantioselectivity

c.) Chiral-at-iron catalyzed asymmetric hetero-Diels-Alder reaction

Yubiao Hong. Chem. Eur. J. 2021, 27, 8557 -8563.

Nemrud Demirel. Organometallics. 2022, 41, 3852–3860.

Table 1. Comparison of Different Chiral-at-Iron Catalysts in a Hetero-Diels-Alder Reaction^a

 Λ -Fe1

 Λ -Fe3

entry	catalyst	conditions	yield (%) ^b	dr ^c	ee (%) ^c
1	Λ-Fe1	N ₂	88	97:3	89.4
2	Λ -Fe1	Air	71	97:3	89.6
3	Λ -Fe1	N ₂ + H ₂ O (10 equiv)	78	97:3	74.6
4	Λ -Fe1	Air + H_2O (10 equiv)	67	98:2	81.2
5	Λ -Fe2	N_2	83	97:3	91.4
6	Λ -Fe2	Air	77	97:3	91.6
7	Λ -Fe2	N ₂ + H ₂ O (10 equiv)	83	98:2	93.6
8	Λ -Fe2	Air + H_2O (10 equiv)	61	98:2	93.8
9	Λ -Fe3	N_2	64	95:5	70.8
10	Λ -Fe3	Air + H_2O (10 equiv)	38	99:1	89.0
11 ^d	Λ -Fe2	Air + H_2O (10 equiv)	75	98:2	93.9
12	Δ -Fe2	Air + H_2O (20 equiv)	63	98:2	-94.1

Proposal

Thanks for your listening

